Skip to main content
Log in

Drug Dosage in Patients during Continuous Renal Replacement Therapy

Pharmacokinetic and Therapeutic Considerations

  • Review Article
  • Clinical Pharmacokinetics and Disease Processes
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

The advantages of continuous haemofiltration and haemodialysis over intermittent haemodialysis for the treatment of acute renal failure are well recognised. In intensive care patients, 4 different continuous procedures, arteriovenous and venovenous haemofiltration (CAVH and CVVH) or haemodialysis (CAVHD and CVVHD), are employed. These effective detoxification treatments require knowledge of their influence on drug disposition. Data on kinetics of drugs during continuous treatment are scarce and limited almost exclusively to the oldest and least effective procedure (CAVH). Selected dialysis membranes may adsorb drugs, as in the case of aminoglycosides. In addition, elimination of substances with large molecular weights may vary depending on the pore size of the membrane, as in the case of vancomycin. Thus, even if drug dosages can be based on pharmacokinetic studies, selection of a dialysis membrane not studied may cause unpredictable drug concentrations. With these limitations in mind and considering the available literature on pharmacokinetics in patients with renal failure, general guidelines for drug dosage during continuous renal replacement therapy can be given.

In haemofiltration, drug protein binding is the major factor determining sieving, i.e. the appearance of the drug in the ultrafiltrate. In haemodialysis, diffusion is added to ultrafiltration, and therefore the saturation of the combined dialysate and ultrafiltrate will decrease further with increasing dialysate flow rate. In continuous haemofiltration or haemodialysis the extracorporeal clearance can be calculated by multiplying the saturation value (estimated or, better, measured) with the ultrafiltrate and dialysate flow rate. Dividing the extracorporeal clearance by the total clearance (including the nonrenal clearance) gives the fraction of the dose removed due to extracorporeal elimination. Whether dosage recommendations available for anuric patients have to be modified or not can be decided on the basis of this value. In case of high nonrenal clearance, the degree of saturation is without clinical significance. Based on these considerations guidelines have been constructed for the effect of extracorporeal elimination on more than 120 different drugs commonly used in intensive care patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abshagen U, Betzien G, Endele R, Kaufmann B. Pharmacokinetics of intravenous and oral isosorbide-5-mononitrate. European Journal of Clinical Pharmacology 20: 269–275, 1981

    Article  PubMed  CAS  Google Scholar 

  • Adair CG, Bridges JM, Desai ZR. Renal function in the elimination of oral melphalan in patients with multiple myeloma. Cancer Chemotherapy and Pharmacology 17: 185–188, 1986

    Article  PubMed  CAS  Google Scholar 

  • Akintonwa A, Odutola TA, Edeki T, Mabadeje AFB. Hemodialysis clearance of chloroquine in uraemic patients. Therapeutic Drug Monitoring 8: 285–287, 1986

    Article  PubMed  CAS  Google Scholar 

  • Aronoff GR, Sloan RS, Brier ME, Luft FC. The effect of piperacillin dose on elimination kinetics in renal impairment. European Journal of Clinical Pharmacology 24: 543–547, 1983

    Article  PubMed  CAS  Google Scholar 

  • Bandai H, Tsubakihara Y, Yamato E, Yokoyama K, Okada N, et al. Pharmacokinetics of ofloxacin in severe chronic renal failure. Clinical Therapeutics 11: 210–218, 1989

    PubMed  CAS  Google Scholar 

  • Beermann B, Grind M. Clinical pharmacokinetics of some newer diuretics. Clinical Pharmacokinetics 13: 254–266, 1987

    Article  PubMed  CAS  Google Scholar 

  • Benet LZ, Sheiner LB. Design and optimization of dosage regimens; pharmacokinetic data. In Goodman Gilman et al. (Eds) The pharmacological basis of therapeutics, 7th ed., pp. 1663–1733, Macmillan, New York, 1985

    Google Scholar 

  • Bennett WM. Appendix: Practical guideline for drug dosing in renal failure. In Brenner et al. (Eds) Pharmacotherapy of renal disease and hypertension, pp. 349–400, Churchill Livingstone, New York, 1987

    Google Scholar 

  • Bennett WM. Guide to drug dosage in renal failure. In Mammen et al. (Eds) Clinical pharmacokinetics drug data handbook 1989, pp. 39–90, ADIS Press, New Zealand, 1989

    Google Scholar 

  • Bennett WM, Aronoff GR, Morrison G, Golper TA, Pulliam J, et al. Drug prescribing in renal failure: Dosing guidelines for adults. American Journal of Kidney Diseases 3: 155–193, 1983

    PubMed  CAS  Google Scholar 

  • Bircher J, Lotterer E (Eds). Klinisch-Pharmakologische Datensammlung, Gustav Fischer, Stuttgart, 1988

    Google Scholar 

  • Bodenham A, Shelly MP, Park GR. The altered pharmacokinetics and pharmacodynamics of drugs commonly used in critically ill patients. Clinical Pharmacokinetics 14: 343–373, 1988

    Article  Google Scholar 

  • Boelaert J, Schurgers M, Matthys E, Daneels R, Van Peer A, et al. Itraconazole pharmacokinetics in patients with renal dysfunction. Antimicrobial Agents and Chemotherapy 32: 1595–1597, 1988

    Article  PubMed  CAS  Google Scholar 

  • Böhler J, Reetze P, Keller E, Kramer A, Schollmeyer P. Rebound of vancomycin plasma levels after hemodialysis with highly permeable membranes. European Journal of Clinical Pharmacology, 42: 635–640, 1992

    Article  PubMed  Google Scholar 

  • Bolton WK, Scheld WM, Spyker DA, Overby TL, Sande MA. Pharmacokinetics of moxalactam in subjects with various degrees of renal dysfunction. Antimicrobial Agents and Chemotherapy 18: 933–938, 1980

    Article  PubMed  CAS  Google Scholar 

  • Bonati M, Traina GL, Villa G, Salvadeo A, Gentile MG, et al. Teicoplanin pharmacokinetics in patients with chronic renal failure. Clinical Pharmacokinetics 12: 292–301, 1987

    Article  PubMed  CAS  Google Scholar 

  • Bortel L, Böhm R, Mooy J, Schiffers P, Rahn KH. Pharmacokinetics of nitrendipine in terminal renal failure. European Journal of Clinical Pharmacology 36: 467–471, 1989

    Article  PubMed  Google Scholar 

  • Brazier JL, Pozet N, Faucon G, Traeger J, Hadj-Haissa A. Kinetics of a high dose of piretanide in renal failure. European Journal of Clinical Pharmacology 21: 307–310, 1982

    Article  PubMed  CAS  Google Scholar 

  • Burgess ED, Duff HJ. Hemodialysis removal of propafenone. Pharmacotherapy 9: 331–333, 1989

    PubMed  CAS  Google Scholar 

  • Canaud B, Garred LJ, Christol J-P, Aubas S, Beraud JJ, et al. Pump assisted continuous venovenous hemofiltration for treating acute uremia. Kidney International 33 (Suppl. 24): 154–156, 1988

    Google Scholar 

  • Carchman SH, Sica DA, Davis J, Crowe Jr JT, Wasserman AJ, et al. Steady-state plasma levels and pharmacokinetics of guanfacine in patients with renal insufficiency. Nephron 53: 18–23, 1989

    Article  PubMed  CAS  Google Scholar 

  • Chauvin M, Sandouk P, Scherrmann JM, Farinotti R, Strumza P, et al. Morphine pharmacokinetics in renal failure. Anesthesiology 66: 327–331, 1987

    Article  PubMed  CAS  Google Scholar 

  • Cigarran-Guldris S, Brier ME, Golper TA. Tobramycin clearance during simulated continuous arteriovenous hemodialysis. Contributions to Nephrology 93: 120–123, 1991

    PubMed  CAS  Google Scholar 

  • Colton CK, Henderson LW, Ford CA, Lysaght MJ. Kinetics of hemodiafiltration I. In vitro transport characteristics of a hollow fiber blood ultrafilter. Journal of Laboratory and Clinical Medicine 85: 355–371, 1975

    PubMed  CAS  Google Scholar 

  • Craig WA, Suh B. Changes in protein binding during disease. Scandinavian Journal of Infectious Disease (Suppl. 14): 239–244, 1978

    Google Scholar 

  • Davies SP, Lacey F, Kox WJ, Brown EA. Pharmacokinetics of cefuroxime and ceftazidime in patients with acute renal failure treated by continuous arteriovenous haemodialysis. Nephrology Dialysis and Transplantation 6: 971–976, 1991

    CAS  Google Scholar 

  • Duchin KL, Pierides AM, Heald A, Singhvi SM, Rommel AJ. Elimination kinetics of captopril in patients with renal failure. Kidney International 25: 942–947, 1984

    Article  PubMed  CAS  Google Scholar 

  • Eykyn S, Phillips I, Evans J. Vancomycin for staphylococcal shunt site infections in patients on regular haemodialysis. British Medical Journal 3: 80–82, 1970

    Article  PubMed  CAS  Google Scholar 

  • Faulds D, Heel C. Ganciclovir: a review of its antiviral activity, pharmacokinetic properties and therapeutic efficiency in cytomegalovirus infections. Drugs 39: 597–638, 1990

    Article  PubMed  CAS  Google Scholar 

  • Fillastre J-P, Singlas E. Pharmacokinetics of newer drugs in patients with renal impairment: Part I. Clinical Pharmacokinetics 20: 293–310, 1991

    Article  PubMed  CAS  Google Scholar 

  • Fillastre JP, Leroy A, Moulin B, Dhib M, Borsa-Lebas F, et al. Pharmacokinetics of quinolones in renal insufficiency. Journal of Antimicrobial Chemotherapy 26 (Suppl. B): 51–60, 1990

    PubMed  Google Scholar 

  • Gambertoglio JG. Appendix: drug reference tables. In Anderson et al. (Eds) Clinical use of drugs in patients with kidney and liver disease, pp. 312–333, Saunders, Philadelphia, 1981

    Google Scholar 

  • Garzone PD, Kroboth PD. Pharmacokinetics of the newer benzodiazepines. Clinical Pharmacokinetics 16: 337–364, 1989

    Article  PubMed  CAS  Google Scholar 

  • Geronemus R, Schneider N. Continuous arteriovenous hemodialysis: a new modality for treatment of acute renal failure. Transactions of the American Society of Artificial Internal Organs 30: 610–613, 1984

    CAS  Google Scholar 

  • Gladziwa U, Klotz U, Krishna DR, Schmitt H, Glöckner WM, et al. Pharmacokinetics and dynamics of famotidine in patients with renal failure. British Journal of Clinical Pharmacology 26: 315–321, 1988

    Article  PubMed  CAS  Google Scholar 

  • Golper TA, Saad A-MA, Morris CD. Gentamicin and phenytoin sieving through hollow-fiber polysulfone hemofilters. Kidney International 30: 937–943, 1986

    Article  PubMed  CAS  Google Scholar 

  • Golper TA. Drug removal during continuous hemofiltration or hemodialysis. Contributions to Nephrology 93: 110–116, 1991

    PubMed  CAS  Google Scholar 

  • Grech-Belanger O, Langlois S, LeBoeuf E. Pharmacokinetics of diltiazem in patients undergoing continuous ambulatory peritoneal dialysis. Journal of Clinical Pharmacology 28: 477–480, 1988

    PubMed  CAS  Google Scholar 

  • Guay DRP, Awni WM, Findlay JWA, Halstenson CE, Abraham PA, et al. Pharmacokinetics and pharmacodynamics of codeine in end-stage renal disease. Clinical Pharmacology and Therapeutics 43: 63–71, 1988

    Article  PubMed  CAS  Google Scholar 

  • Halstenson CE, Opsahl JA, Pence TV, Luke DR, Sirgo MA, et al. The disposition an dynamics of labetalol in patients on dialysis. Clinical Pharmacology and Therapeutics 40: 462–468, 1986

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa H, Itagaki N, Tsujino M, Takahashi K, Yamamoto Y, et al. Pharmacokinetics of cefmenoxime in renal-failure patients undergoing continuous arteriovenous hemofiltration. Japanese Journal of Antibiotics 41: 338–341, 1988

    PubMed  CAS  Google Scholar 

  • Hilt H, Keller F. Elimination von Pharmaka durch Hämofiltration. Grundlagen und Literaturdaten. Anästhesie, Intensivtherapie, Notfallmedizin 22: 278–282, 1987

    Article  PubMed  CAS  Google Scholar 

  • Höffler D. Dosierung wichtiger Arzneimittel bei Niereninsuffizienz. Medizinische Welt 32: 875–879, 1981

    PubMed  Google Scholar 

  • Holdiness MR. Clinical pharmacokinetics of the antituberculosis drugs. Clinical Pharmacokinetics 9: 511–544, 1984

    Article  PubMed  CAS  Google Scholar 

  • Holt DW, Storey GCA. Die Pharmacokinetik von Amiodaron. In Breithardt & Loogen (Eds) Neue Aspekte in der medikamentösen Behandlung von Tachyarrhythmien, pp. 75–78, Urban & Schwarzenberg, München, 1983

    Google Scholar 

  • Janknegt R, Nube MJ, van den Hoogenband HM, Oldenhof HGJ, Steenhoek A, et al. Pharmacokinetics of methotrexate in continuous ambulatory peritoneal dialysis. Pharmaceutisch Week-blad Scientific Edition 10: 86–89, 1988

    Article  CAS  Google Scholar 

  • Kates RE, Leier CV. Dobutamine pharmacokinetics in severe heart failure. Clinical Pharmacology and Therapeutics 24: 537–541, 1978

    PubMed  CAS  Google Scholar 

  • Keller E. Peritoneal kinetics of different drugs. Clinical Nephrology 30 (Suppl. l): 24–28, 1988

    Google Scholar 

  • Keller E. Drug therapy during continuous arteriovenous hemofiltration. In Hörl et al. (Eds) New perspectives in hemodialysis, peritoneal dialysis, arteriovenous hemofiltration, and plasmapheresis, pp. 117–127, Plenum Press, New York, 1989

    Chapter  Google Scholar 

  • Keller E, Fecht H, Böhler J, Schollmeyer P. Single dose kinetics of imipenem/cilastatin during continuous arteriovenous haemofiltration in intensive care patients. Nephrology Dialysis and Transplantation 4: 640–645, 1989

    CAS  Google Scholar 

  • Keller E, Hoppe-Seyler G, Mumm R, Schollmeyer P. Influence of hepatic cirrhosis and end-stage renal disease on pharmacokinetics and pharmacodynamics of furosemide. European Journal of Clinical Pharmacology 20: 27–33, 1981

    Article  PubMed  CAS  Google Scholar 

  • Keller E, Reetze P, Schollmeyer P. Drug therapy in patients undergoing continuous ambulatory peritoneal dialysis. Clinical pharmacokinetic considerations. Clinical Pharmacokinetics 18: 104–117, 1990

    Article  PubMed  CAS  Google Scholar 

  • Keller F, Offermann G, Lode H. Supplementary dose after hemodialysis. Nephron 30: 220–227, 1982

    Article  PubMed  CAS  Google Scholar 

  • Keller F, Schwarz A (Eds). Pharmacokinetik bei Niereninsuffizienz, Gustav Fischer, Stuttgart, 1987

    Google Scholar 

  • Kiechel JR. Pharmacokinetics of guanfacine in patients with impaired renal function and in some elderly patients. American Journal of Cardiology 57: 18E–21E, 1986

    Article  PubMed  CAS  Google Scholar 

  • Kirch W, Rose I, Demers HG, Leopold G, Pabst J, et al. Pharmacokinetics of bisoprolol during repeated oral administration to healthy volunteers and patients with kidney or liver disease. Clinical Pharmacokinetics 13: 110–117, 1978

    Article  Google Scholar 

  • Kleinbloesem CH, Brummelen P, Harten J, Danhof M, Breimer DD. Nifedipine: influence of renal function on pharmacokinetic/hemodynamic relationship. Clinical Pharmacology and Therapeutics 37: 563–574, 1985

    Article  PubMed  CAS  Google Scholar 

  • Knauf H, Mutschler E. Pharmacodynamics and pharmacokinetics of xipamide in patients with normal and impaired kidney function. European Journal of Clinical Pharmacology 26: 513–520, 1984

    Article  PubMed  CAS  Google Scholar 

  • Koup JR, Keller E, Neumann H, Stoeckel K. Ceftriaxone pharmacokinetics during peritoneal dialysis. European Journal of Clinical Pharmacology 30: 303–307, 1986

    Article  PubMed  CAS  Google Scholar 

  • Kösters W, Klotschkoff P, Abshagen U. Pharmacokinetik von Isosorbid-5-Mononitrat bei Patienten mit fortgeschrittener Niereninsuffizienz. Medizinische Welt 14a: 2–4, 1981

    Google Scholar 

  • Kraft D, Lode H. Elimination of ampicillin and gentamicin by hemofiltration. Klinische Wochenschrift 57: 195–196, 1979

    Article  PubMed  CAS  Google Scholar 

  • Krakamp B, Tanswell P, Bozler G. Steady-state intravenous pharmacokinetics of pirenzepine in patients with differing degrees of renal dysfunction. European Journal of Clinical Pharmacology 36: 75–78, 1989

    Article  PubMed  CAS  Google Scholar 

  • Kramer P, Wigger W, Rieger J, Matthaei D, Scheler F. Arteriovenous haemofiltration: a new and simple method for treatment of over-hydrated patients resistant to diuretics. Klinische Wochenschrift 55: 1121–1122, 1977

    Article  PubMed  CAS  Google Scholar 

  • Kroh U, Hofmann W, Lennartz H. Pharmakokinetik und Dosisanpassung von Cefotaxim bei kontinuierlicher volumenkonstanter Hämofiltration (CVHF). Zeitschrift für antimikrobielle antineoplastische Chemotherapie 6: 99–105, 1988

    Google Scholar 

  • Kronfol NO, Lau AH, Barakat MM. Aminoglycoside binding to polyacrylonitrile hemofilter membranes during continuous hemofiltration. Transactions of the American Society of Artificial Internal Organs 33: 300–303, 1987

    CAS  Google Scholar 

  • Kronfol NO, Lau AH, Colon-Rivera J, Libertin CL. Effect of CAVH membrane types on drug-sieving coefficients and clearances. Transactions of the American Society of Artificial Internal Organs 32: 85–87, 1986

    CAS  Google Scholar 

  • Krupp A, Leuwer M, Schmidt H, Eberhardt B. Die Pharmakokinetik von Azlocillin bei anurischen Patienten während der kontinuierlichen arteriovenösen Hämofiltration. Nieren- und Hochdruckkrankheiten 19: 524–529, 1990

    Google Scholar 

  • Lee CC, Marbury TC. Drug therapy in patients undergoing haemodialysis. Clinical pharmacokinetic considerations. Clinical Pharmacokinetics 9: 42–66, 1984

    Article  PubMed  CAS  Google Scholar 

  • Lehmann CR, Heironimus JD, Collins CB, O’Neil TJ, Pierson WP, et al. Metoclopramide kinetics in patients with impaired renal function and clearance by hemodialysis. Clinical Pharmacology and Therapeutics 37: 284–289, 1985

    Article  PubMed  CAS  Google Scholar 

  • Levine JF. Vancomycin: a review. Medical Clinics of North America 71: 1135–1145, 1987

    PubMed  CAS  Google Scholar 

  • Levy G. Pharmacokinetics in renal disease. American Journal of Medicine 62: 461–465, 1977

    Article  PubMed  CAS  Google Scholar 

  • Loos U, Musch E, Engel M, Hartlapp JH, Hügl E, et al. The pharmacokinetics of melphalan during intermittent therapy of multiple myeloma. European Journal of Clinical Pharmacology 35: 187–193, 1988

    Article  PubMed  CAS  Google Scholar 

  • Lowenthal DT, Irvin JD, Merrill D, Saris S, Ulm E, et al. The effect of renal function on enalapril kinetics. Clinical Pharmacology and Therapeutics 38: 661–666, 1985

    Article  PubMed  CAS  Google Scholar 

  • Maher JF. Influence of continuous ambulatory peritoneal dialysis on elimination of drugs. Peritoneal Dialysis Bulletin 7: 159–167, 1987

    Google Scholar 

  • Manuel MA, Paton TW, Cornish WR. Drugs and peritoneal dialysis. Peritoneal Dialysis Bulletin 3: 117–125, 1983

    Google Scholar 

  • Merdjan H, Baumelou A, Diquet B, Chick O, Singlas E. Pharmacokinetics of ornidazole in patients with renal insufficiency; influence of haemodialysis and peritoneal dialysis. British Journal of Clinical Pharmacology 19: 211–217, 1985

    Article  PubMed  CAS  Google Scholar 

  • Morgan DJ, Ching MS, Raymond K, Bury RW, Mashford ML, et al. Elimination of amphothericin B in impaired renal function. Clinical Pharmacology and Therapeutics 34: 248–253, 1983

    Article  PubMed  CAS  Google Scholar 

  • Morrison G, Chiang ST, Koepke HH, Walker BR. Effect of renal impairment and hemodialysis on lorazepam kinetics. Clinical Pharmacology and Therapeutics 35: 646–652, 1984

    Article  PubMed  CAS  Google Scholar 

  • Naesdal J, Andersson T, Bodemar G, Larsson R, Regardh C-G, et al. Pharmacokinetics of [14C]omeprazole in patients with impaired renal function. Clinical Pharmacology and Therapeutics 40: 344–351, 1986

    Article  PubMed  CAS  Google Scholar 

  • Ochs HR, Greenblatt DJ, Verburg-Ochs B. Ibuprofen kinetics in patients with renal insufficiency who are receiving maintenance hemodialysis. Arthritis and Rheumatism 28: 1430–1434, 1985

    Article  PubMed  CAS  Google Scholar 

  • Olbricht C, Schurek HJ, Müller C. Die kontinuierliche spontane Hämofiltration (Kramer Technik). Ein neuer Weg in der Intensivtherapie des akuten Nierenversagens ohne aufwendige Dialysetechnik. Intensivmedizin 19: 275–279, 1982

    Google Scholar 

  • Padrini R, Compostella L, Piovan D, Javarnaro A, Cucchini F, et al. Ajmaline test in a patient with chronic renal failure. A pharmacokinetic and pharmacodynamic study. Clinical Pharmacokinetics 21: 150–154, 1991

    Article  PubMed  CAS  Google Scholar 

  • Paton TW, Cornish WR, Manuel MA, Hardy BG. Drug therapy in patients undergoing peritoneal dialysis. Clinical pharmacokinetic considerations. Clinical Pharmacokinetics 10: 404–426, 1985

    Article  PubMed  CAS  Google Scholar 

  • Przechera M, Bengel D, Risler T. Pharmacokinetics of imipenem/cilastatin during continuous arteriovenous hemofiltration. Contributions to Nephrology 93: 131–134, 1991

    PubMed  CAS  Google Scholar 

  • Reetze-Bonorden P, Böhler J, Kohler C, Schollmeyer P, Keller E. Elimination of Vancomycin in patients on continuous arteriovenous hemodialysis. Contributions to Nephrology 93: 135–139, 1991

    PubMed  CAS  Google Scholar 

  • Reyad S, Barajas M, Swartz RD, Hyneck ML, Moustafa M. Drug removal during continuous arteriovenous hemofiltration. Contemporary Dialysis and Nephrology 5: 30–42, 1989

    Google Scholar 

  • Reynolds JEF (Ed.). Martindale: the extra pharmacopoeia, 29th ed., Pharmaceutical Press, London, 1989

    Google Scholar 

  • Roberts DE, Williams JD. Ciprofloxacin in renal failure. Journal of Antimicrobial Chemotherapy 23: 820–823, 1989

    Article  PubMed  CAS  Google Scholar 

  • Rumpf KW, Rieger J, Ansorg R, Doht B, Scheler F. Binding of antibiotics by dialysis membranes and its clinical relevance. Proceedings of the European Dialysis and Transplant Association 14: 607–609, 1977

    PubMed  CAS  Google Scholar 

  • Schäfer GE, Döring C, Sodemann K, Russ A, Schröder HM. Continuous arteriovenous and venovenous hemodialysis in critically ill patients. Contributions to Nephrology 93: 23–28, 1991

    PubMed  Google Scholar 

  • Schunkert H, Kindler J, Gassmann M, Lahn W, Irmisch R, et al. Pharmacokinetics of ramipril in hypertensive patients with renal insufficiency. European Journal of Clinical Pharmacology 37: 249–256, 1989

    Article  PubMed  CAS  Google Scholar 

  • Sear JW. Sufentanil disposition in patients undergoing renal transplantation: influence of choice of kinetic model. British Journal of Anaesthesiology 63: 60–67, 1989

    Article  CAS  Google Scholar 

  • Sica DA, Comstock T, Harford A, Eshelman F. Ranitidine pharmacokinetics in continuous ambulatory peritoneal dialysis. European Journal of Clinical Pharmacology 32: 587–591, 1987

    Article  PubMed  CAS  Google Scholar 

  • Simon C, Stille W (Eds). Antibiotika-Therapie in Klinik und Praxis, 7th ed., Schattauer, Stuttgart, 1989

    Google Scholar 

  • Singlas E, Fillastre J-P. Pharmacokinetics of newer drugs in patients with renal impairment: Part II. Clinical Pharmacokinetics 20: 389–410, 1991

    Article  PubMed  CAS  Google Scholar 

  • Singlas E, Taburet AM, Landru I, Albin H, Ryckelinck JPh. Pharmacokinetics of ciprofloxacin tablets in renal failure; influence of haemodialysis. European Journal of Clinical Pharmacology 31: 589–593, 1987

    Article  PubMed  CAS  Google Scholar 

  • Slugg PH, Haug MT, Bosworth C, Paganini EP. Comparitive vancomycin kinetics in intensive care unit patients with acute renal failure: intermittent hemodialysis versus continuous hemofiltration hemodialysis. Contributions to Nephrology 93: 140–142, 1991

    PubMed  CAS  Google Scholar 

  • Sommadossi J-P, Bevan R, Ling T, Lee F, Mastre B, et al. Clinical pharmacokinetics of ganciclovir in patients with normal and impaired renal function. Reviews of Infectious Diseases 10 (Suppl. 3): 507–514, 1988

    Article  Google Scholar 

  • Späth G (Ed.). Amiodaron, de Gruyter, Berlin, 1984

    Google Scholar 

  • Sprenger KGB, Stephen H, Kratz W, Huber K, Franz HE. Optimizing of hemodiafiltration with modern membranes? Contributions to Nephrology 46: 43–60, 1985

    PubMed  CAS  Google Scholar 

  • Stevens PE, Davies SP, Brown EA, Riley B, Gower PE, et al. Continuous arteriovenous haemodialysis in critically ill patients. Lancet 2: 150–152, 1988

    Article  PubMed  CAS  Google Scholar 

  • St. Peter WL, Redic-Kill KA, Halstenson CE. Clinical pharmacokinetics of antibiotics in patients with impaired renal function. Clinical Pharmacokinetics 22: 169–210, 1992

    Article  PubMed  CAS  Google Scholar 

  • Thijssen HHW, Wolters J. The metabolic disposition of flucloxacillin in patients with impaired renal failure. European Journal of Clinical Pharmacology 22: 429–434, 1982

    Article  PubMed  CAS  Google Scholar 

  • Toon S, Ross E, Gokal G, Rowland M. An assessment of the effects of impaired function and haemodialysis on the pharmacokinetics of fluconazole. British Journal of Clinical Pharmacology 29: 221–226, 1990

    Article  PubMed  CAS  Google Scholar 

  • Vanholder R, Van Landschoot N, Smet DR, Schoots A, Ringoir S. Drug protein binding in chronic renal failure: evaluation of nine drugs. Kidney International 33: 996–1004, 1988

    Article  PubMed  CAS  Google Scholar 

  • Vožeh S, Schmidlin O, Taeschner W. Pharmacokinetic drug data. Clinical Pharmacokinetics 13: 254–284, 1988

    Article  Google Scholar 

  • Weiss LG, Cars O, Danielson BG, Grahnen A, Wikström B. Pharmacokinetics of intravenous cefuroxime during intermittent and continuous arteriovenous hemofiltration. Clinical Nephrology 30: 282–286, 1988

    PubMed  CAS  Google Scholar 

  • Whelton A. Antibiotic pharmacokinetics and clinical application in renal insufficiency. Medical Clinics of North America 66: 267–281, 1982

    PubMed  CAS  Google Scholar 

  • Wiegers U, Hanrath P, Kuck KH, Pottage A, Graffner C, et al. Pharmacokinetics of tocainide in patients with renal dysfunction and during haemodialysis. European Journal of Clinical Pharmacology 24: 503–507, 1983

    Article  PubMed  CAS  Google Scholar 

  • Williams AJ, McQuinn RL, Walls J. Pharmacokinetics of flecainide acetate in patients with severe renal impairment. Clinical Pharmacology and Therapeutics 43: 449–455, 1988

    Article  PubMed  CAS  Google Scholar 

  • Wu MJ, Ing TS, Soung LS, Daugirdas JT, Hano JE, et al. Amantadine hydrochloride pharmacokinetics in patients with impaired renal function. Clinical Nephrology 17: 19–23, 1982

    PubMed  CAS  Google Scholar 

  • Zarowitz BJ, Anandan JV, Dumler F, Jayashankar J, Levin N. Continuous arteriovenous hemofiltration of aminoglycoside antibiotics in critically ill patients. Journal of Clinical Pharmacology 26: 686–689, 1986

    PubMed  CAS  Google Scholar 

  • Ziegler MG, Kennedy B, Morrissey E, O’Connor DT. Norepinephrine clearance, chromogranin A and dopamine β hydroxylase in renal failure. Kidney International 37: 1357–1362, 1990

    Article  PubMed  CAS  Google Scholar 

  • Zini R, Riant P, Barre J, Tillement J-P. Disease-induced variations in plasma protein levels. Implications for drug dosage regimes: Part I. Clinical Pharmacokinetics 19: 147–159, 1990a

    Article  PubMed  CAS  Google Scholar 

  • Zini R, Riant P, Barre J, Tillement J-P. Disease-induced variations in plasma protein levels. Implications for drug dosage regimes: Part II. Clinical Pharmacokinetics 19: 218–229, 1990b

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reetze-Bonorden, P., Böhler, J. & Keller, E. Drug Dosage in Patients during Continuous Renal Replacement Therapy. Clin. Pharmacokinet. 24, 362–379 (1993). https://doi.org/10.2165/00003088-199324050-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199324050-00002

Keywords

Navigation