Skip to main content

Drug Dosing in Continuous Renal Replacement Therapy (CRRT)

  • Chapter
  • First Online:
Core Concepts in Dialysis and Continuous Therapies

Abstract

Continuous renal replacement therapy (CRRT) is considered superior to intermittent haemodialysis (IHD) in maintaining haemodynamic stability and has become the technique of choice for dealing with acute kidney injury (AKI) in the intensive care setting. Correct dosing of drugs in patients undergoing CRRT is extremely challenging, since it is necessary to consider both extracorporeal drug removal by the CRRT process itself and pharmacokinetic perturbations caused by organ dysfunction, sepsis and/or other aspects of critical illness. Drug removal during CRRT depends on the physicochemical properties and pharmacokinetic behaviour of that drug, the CRRT technique used, and other physical and patient factors including membrane selection, effluent flow rate and systemic pH. Patients with AKI who require CRRT comprise a very heterogeneous population and they frequently require complex drug therapy. It is therefore essential that drug dosing is appropriately prescribed and adjusted so as to be clinically safe and effective in optimising clinical outcomes. Well-designed pharmacokinetic studies in critically ill patients receiving CRRT are relatively rare, and while there are multiple published dosing recommendations that are widely used, in reality these have not been adequately validated in prospective studies to see if their implementation either increases the attainment of target therapeutic serum concentrations of drugs or, more importantly, improves patient outcomes. Here, we discuss the general principles determining whether a dose adjustment is necessary during CRRT and provide some practical guidance enabling clinicians to avoid ineffective drug dosing in this setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davenport A, Will EJ, Davidson AM. Improved cardiovascular stability during continuous modes of renal replacement therapy in critically ill patients with acute hepatic and renal failure. Crit Care Med. 1993;21(3):328–38.

    Article  CAS  PubMed  Google Scholar 

  2. Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I, et al. Continuous renal replacement therapy: a worldwide practice survey. The beginning and ending supportive therapy for the kidney (B.E.S.T. kidney) investigators. Intensive Care Med. 2007;33(9):1563–70.

    Article  PubMed  Google Scholar 

  3. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294(7):813–8.

    Article  CAS  PubMed  Google Scholar 

  4. Mueller BA, Scarim SK, Macias WL. Comparison of imipenem pharmacokinetics in patients with acute or chronic renal failure treated with continuous hemofiltration. Am J Kidney Dis. 1993;21(2):172–9.

    Article  CAS  PubMed  Google Scholar 

  5. Vaara S, Pettila V, Kaukonen KM. Quality of pharmacokinetic studies in critically ill patients receiving continuous renal replacement therapy. Acta Anaesthesiol Scand. 2012;56(2):147–57.

    Article  CAS  PubMed  Google Scholar 

  6. Schetz M. Drug dosing in continuous renal replacement therapy: general rules. Curr Opin Crit Care. 2007;13(6):645–51.

    Article  PubMed  Google Scholar 

  7. Reetze-Bonorden P, Bohler J, Keller E. Drug dosage in patients during continuous renal replacement therapy. Pharmacokinetic and therapeutic considerations. Clin Pharmacokinet. 1993;24(5):362–79.

    Article  CAS  PubMed  Google Scholar 

  8. Matzke GR, Aronoff GR, Atkinson AJ Jr, Bennett WM, Decker BS, Eckardt KU, et al. Drug dosing consideration in patients with acute and chronic kidney disease-a clinical update from Kidney Disease: improving Global Outcomes (KDIGO). Kidney Int. 2011;80(11):1122–37.

    Article  CAS  PubMed  Google Scholar 

  9. Scribner BH, Caner JE, Buri R, Quinton W. The technique of continuous hemodialysis. Trans Am Soc Artif Intern Organs. 1960;10–11(6):88–103.

    Google Scholar 

  10. Mueller BA, Pasko DA, Sowinski KM. Higher renal replacement therapy dose delivery influences on drug therapy. Artif Organs. 2003;27(9):808–14.

    Article  CAS  PubMed  Google Scholar 

  11. Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, Lo S, et al. Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med. 2009;361(17):1627–38.

    Article  PubMed  Google Scholar 

  12. Palevsky PM, Zhang JH, O’Connor TZ, Chertow GM, Crowley ST, Choudhury D, et al. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008;359(1):7–20.

    Article  CAS  PubMed  Google Scholar 

  13. Bugge JF. Pharmacokinetics and drug dosing adjustments during continuous venovenous hemofiltration or hemodiafiltration in critically ill patients. Acta Anaesthesiol Scand. 2001;45(8):929–34.

    Article  CAS  PubMed  Google Scholar 

  14. Tian Q, Gomersall CD, Wong A, Leung P, Choi G, Joynt GM, et al. Effect of drug concentration on adsorption of levofloxacin by polyacrylonitrile haemofilters. Int J Antimicrob Agents. 2006;28(2):147–50.

    Article  CAS  PubMed  Google Scholar 

  15. Clark WR, Hamburger RJ, Lysaght MJ. Effect of membrane composition and structure on solute removal and biocompatibility in hemodialysis. Kidney Int. 1999;56(6):2005–15.

    Article  CAS  PubMed  Google Scholar 

  16. Kroh UF. Drug administration in critically ill patients with acute renal failure. New Horiz. 1995;3(4):748–59.

    CAS  PubMed  Google Scholar 

  17. Vincent HH, Vos MC, Akcahuseyin E, Goessens WH, van Duyl WA, Schalekamp MA. Drug clearance by continuous haemodiafiltration. Analysis of sieving coefficients and mass transfer coefficients of diffusion. Blood Purif. 1993;11(2):99–107.

    Article  CAS  PubMed  Google Scholar 

  18. Bouman CS, van Kan HJ, Koopmans RP, Korevaar JC, Schultz MJ, Vroom MB. Discrepancies between observed and predicted continuous venovenous hemofiltration removal of antimicrobial agents in critically ill patients and the effects on dosing. Intensive Care Med. 2006;32(12):2013–9.

    Article  PubMed  Google Scholar 

  19. Driscoll DF, McMahon M, Blackburn GL, Bistrian BR. Phenytoin toxicity in a critically ill, hypoalbuminemic patient with normal serum drug concentrations. Crit Care Med. 1988;16(12):1248–9.

    Article  CAS  PubMed  Google Scholar 

  20. Joynt GM, Lipman J, Gomersall CD, Young RJ, Wong EL, Gin T. The pharmacokinetics of once-daily dosing of ceftriaxone in critically ill patients. J Antimicrob Chemother. 2001;47(4):421–9.

    Article  CAS  PubMed  Google Scholar 

  21. Churchwell MD, Pasko DA, Smoyer WE, Mueller BA. Enhanced clearance of highly protein-bound drugs by albumin-supplemented dialysate during modeled continuous hemodialysis. Nephrol Dial Transplant. 2009;24(1):231–8.

    Article  CAS  PubMed  Google Scholar 

  22. De Pont AC, Bouman CS, Bakhtiari K, Schaap MC, Nieuwland R, Sturk A, et al. Predilution versus postdilution during continuous venovenous hemofiltration: a comparison of circuit thrombogenesis. ASAIO J. 2006;52(4):416–22.

    Article  PubMed  Google Scholar 

  23. Uchino S, Cole L, Morimatsu H, Goldsmith D, Bellomo R. Clearance of vancomycin during high-volume haemofiltration: impact of pre-dilution. Intensive Care Med. 2002;28(11):1664–7.

    Article  PubMed  Google Scholar 

  24. Churchwell MD, Mueller BA. Drug dosing during continuous renal replacement therapy. Semin Dial. 2009;22(2):185–8.

    Article  PubMed  Google Scholar 

  25. Brunet S, Leblanc M, Geadah D, Parent D, Courteau S, Cardinal J. Diffusive and convective solute clearances during continuous renal replacement therapy at various dialysate and ultrafiltration flow rates. Am J Kidney Dis. 1999;34(3):486–92.

    Article  CAS  PubMed  Google Scholar 

  26. Troyanov S, Cardinal J, Geadah D, Parent D, Courteau S, Caron S, et al. Solute clearances during continuous venovenous haemofiltration at various ultrafiltration flow rates using multiflow-100 and HF1000 filters. Nephrol Dial Transplant. 2003;18(5):961–6.

    Article  PubMed  Google Scholar 

  27. Bellmann R, Egger P, Gritsch W, Bellmann-Weiler R, Joannidis M, Kaneider N, et al. Amphotericin B lipid formulations in critically ill patients on continuous veno-venous haemofiltration. J Antimicrob Chemother. 2003;51(3):671–81.

    Article  CAS  PubMed  Google Scholar 

  28. Isla A, Maynar J, Sanchez-Izquierdo JA, Gascon AR, Arzuaga A, Corral E, et al. Meropenem and continuous renal replacement therapy: in vitro permeability of 2 continuous renal replacement therapy membranes and influence of patient renal function on the pharmacokinetics in critically ill patients. J Clin Pharmacol. 2005;45(11):1294–304.

    Article  CAS  PubMed  Google Scholar 

  29. Seyler L, Cotton F, Taccone FS, De Backer D, Macours P, Vincent JL, et al. Recommended beta-lactam regimens are inadequate in septic patients treated with continuous renal replacement therapy. Crit Care. 2011;15(3):R137.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wilson FP, Berns JS. Vancomycin levels are frequently subtherapeutic during continuous venovenous hemodialysis (CVVHD). Clin Nephrol. 2012;77(4):329–31.

    Article  CAS  PubMed  Google Scholar 

  31. Roberts JA, Kruger P, Paterson DL, Lipman J. Antibiotic resistance—what’s dosing got to do with it? Crit Care Med. 2008;36(8):2433–40.

    Article  CAS  PubMed  Google Scholar 

  32. Jiang SP, Zhu ZY, Ma KF, Zheng X, Lu XY. Impact of pharmacist antimicrobial dosing adjustments in septic patients on continuous renal replacement therapy in an intensive care unit. Scand J Infect Dis. 2013;45(12):891–9.

    Article  PubMed  Google Scholar 

  33. Gibney RT, Kimmel PL, Lazarus M. The Acute Dialysis Quality Initiative—part I: definitions and reporting of CRRT techniques. Adv Ren Replace Ther. 2002;9(4):252–4.

    Article  PubMed  Google Scholar 

  34. Aronoff G. Drug prescribing in renal failure. Philadelphia: ACP Press; 2007.

    Google Scholar 

  35. Sweetman SC, editor. Martindale: the complete drug reference. London: Pharmaceutical Press.

    Google Scholar 

  36. Joint Formulary Committee. British National Formulary. London: Pharmaceutical Press; 2014.

    Google Scholar 

  37. McEvoy GK, Snow ED, editors. AHFS: drug information. Bethseda: American Society of Health-Systems Pharmacists; 2014.

    Google Scholar 

  38. Micromedex Healthcare Series [Internet database]. Greenwood Village: Thomson Micromedex. Updated periodically; 2015.

    Google Scholar 

  39. Vidal L, Shavit M, Fraser A, Paul M, Leibovici L. Systematic comparison of four sources of drug information regarding adjustment of dose for renal function. BMJ. 2005;331(7511):263.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Khanal A, Castelino RL, Peterson GM, Jose MD. Dose adjustment guidelines for medications in patients with renal impairment: how consistent are drug information sources? Intern Med J. 2014;44(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  41. Golightly LK, Teitelbaum I, Kiser TH, Levin DA, Barber GR, Jones MA, et al. Renal pharmacotherapy: dosage adjustment of medications eliminated by the kidneys. New York: Springer; 2013.

    Book  Google Scholar 

  42. Trotman RL, Williamson JC, Shoemaker DM, Salzer WL. Antibiotic dosing in critically ill adult patients receiving continuous renal replacement therapy. Clin Infect Dis. 2005;41(8):1159–66.

    Article  CAS  PubMed  Google Scholar 

  43. Choi G, Gomersall CD, Tian Q, Joynt GM, Freebairn R, Lipman J. Principles of antibacterial dosing in continuous renal replacement therapy. Crit Care Med. 2009;37(7):2268–82.

    Article  CAS  PubMed  Google Scholar 

  44. Fissell WH. Antimicrobial dosing in acute renal replacement. Adv Chronic Kidney Dis. 2013;20(1):85–93.

    Article  PubMed  Google Scholar 

  45. Li AM, Gomersall CD, Choi G, Tian Q, Joynt GM, Lipman J. A systematic review of antibiotic dosing regimens for septic patients receiving continuous renal replacement therapy: do current studies supply sufficient data? J Antimicrob Chemother. 2009;64(5):929–37.

    Article  CAS  PubMed  Google Scholar 

  46. Bohler J, Donauer J, Keller F. Pharmacokinetic principles during continuous renal replacement therapy: drugs and dosage. Kidney Int Suppl. 1999;72:S24–8.

    Article  CAS  PubMed  Google Scholar 

  47. Connor MJ Jr, Salem C, Bauer SR, Hofmann CL, Groszek J, Butler R, et al. Therapeutic drug monitoring of piperacillin-tazobactam using spent dialysate effluent in patients receiving continuous venovenous hemodialysis. Antimicrob Agents Chemother. 2011;55(2):557–60.

    Article  CAS  PubMed  Google Scholar 

  48. Kroh UF, Lennartz H, Edwards DJ, Stoeckel K. Pharmacokinetics of ceftriaxone in patients undergoing continuous veno-venous hemofiltration. J Clin Pharmacol. 1996;36(12):1114–9.

    Article  CAS  PubMed  Google Scholar 

  49. Bergner R, Hoffmann M, Riedel KD, Mikus G, Henrich DM, Haefeli WE, et al. Fluconazole dosing in continuous veno-venous haemofiltration (CVVHF): need for a high daily dose of 800 mg. Nephrol Dial Transplant. 2006;21(4):1019–23.

    Article  CAS  PubMed  Google Scholar 

  50. Schetz M, Ferdinande P, Van den Berghe G, Verwaest C, Lauwers P. Pharmacokinetics of continuous renal replacement therapy. Intensive Care Med. 1995;21(7):612–20.

    Article  CAS  PubMed  Google Scholar 

  51. Browning L, Parker D Jr, Liu-DeRyke X, Shah A, Coplin WM, Rhoney DH. Possible removal of topiramate by continuous renal replacement therapy. J Neurol Sci. 2010;288(1–2):186–9.

    Article  CAS  PubMed  Google Scholar 

  52. Oltrogge KM, Peppard WJ, Saleh M, Regner KR, Herrmann DJ. Phenytoin removal by continuous venovenous hemofiltration. Ann Pharmacother. 2013;47(9):1218–22.

    Article  PubMed  Google Scholar 

  53. De Maat MM, van Leeuwen HJ, Edelbroek PM. High unbound fraction of valproic acid in a hypoalbuminemic critically ill patient on renal replacement therapy. Ann Pharmacother. 2011;45(3):e18.

    Article  PubMed  Google Scholar 

  54. Tsu LV, Dager WE. Bivalirudin dosing adjustments for reduced renal function with or without hemodialysis in the management of heparin-induced thrombocytopenia. Ann Pharmacother. 2011;45(10):1185–92.

    Article  CAS  PubMed  Google Scholar 

  55. Fliser D, Kielstein JT. Technology Insight: treatment of renal failure in the intensive care unit with extended dialysis. Nat Clin Pract Nephrol. 2006;2(1):32–9.

    Article  PubMed  Google Scholar 

  56. Kielstein JT, Schiffer M, Hafer C. Back to the future: extended dialysis for treatment of acute kidney injury in the intensive care unit. J Nephrol. 2010;23(5):494–501.

    PubMed  Google Scholar 

  57. Kielstein JT, Woywodt A, Schumann G, Haller H, Fliser D. Efficiency of high-flux hemodialysis in the treatment of valproic acid intoxication. J Toxicol Clin Toxicol. 2003;41(6):873–6.

    Article  CAS  PubMed  Google Scholar 

  58. Bogard KN, Peterson NT, Plumb TJ, Erwin MW, Fuller PD, Olsen KM. Antibiotic dosing during sustained low-efficiency dialysis: special considerations in adult critically ill patients. Crit Care Med. 2011;39(3):560–70.

    Article  CAS  PubMed  Google Scholar 

  59. Czock D, Husig-Linde C, Langhoff A, Schopke T, Hafer C, de Groot K, et al. Pharmacokinetics of moxifloxacin and levofloxacin in intensive care unit patients who have acute renal failure and undergo extended daily dialysis. Clin J Am Soc Nephrol. 2006;1(6):1263–8.

    Article  CAS  PubMed  Google Scholar 

  60. Lorenzen JM, Broll M, Kaever V, Burhenne H, Hafer C, Clajus C, et al. Pharmacokinetics of ampicillin/sulbactam in critically ill patients with acute kidney injury undergoing extended dialysis. Clin J Am Soc Nephrol. 2012;7(3):385–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Veltri MA, Neu AM, Fivush BA, Parekh RS, Furth SL. Drug dosing during intermittent hemodialysis and continuous renal replacement therapy: special considerations in pediatric patients. Paediatr Drugs. 2004;6(1):45–65.

    Article  PubMed  Google Scholar 

  62. D’Arcy DM, Casey E, Gowing CM, Donnelly MB, Corrigan OI. An open prospective study of amikacin pharmacokinetics in critically ill patients during treatment with continuous venovenous haemodiafiltration. BMC Pharmacol Toxicol. 2012;13(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  63. Malone ME, Corrigan OI, Kavanagh PV, Gowing C, Donnelly M, D’Arcy DM. Pharmacokinetics of amphotericin B lipid complex in critically ill patients undergoing continuous venovenous haemodiafiltration. Int J Antimicrob Agents. 2013;42(4):335–42.

    Article  CAS  PubMed  Google Scholar 

  64. Aguilar G, Azanza JR, Carbonell JA, Ferrando C, Badenes R, Parra MA, et al. Anidulafungin dosing in critically ill patients with continuous venovenous haemodiafiltration. J Antimicrob Chemother. 2014;69(6):1620–3.

    Article  CAS  PubMed  Google Scholar 

  65. Weiler S, Seger C, Pfisterer H, Stienecke E, Stippler F, Welte R, et al. Pharmacokinetics of caspofungin in critically ill patients on continuous renal replacement therapy. Antimicrob Agents Chemother. 2013;57(8):4053–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Roberts DM, Roberts JA, Roberts MS, Liu X, Nair P, Cole L, et al. Variability of antibiotic concentrations in critically ill patients receiving continuous renal replacement therapy: a multicentre pharmacokinetic study. Crit Care Med. 2012;40(5):1523–8.

    Article  CAS  PubMed  Google Scholar 

  67. Markou N, Fousteri M, Markantonis SL, Zidianakis B, Hroni D, Boutzouka E, et al. Colistin pharmacokinetics in intensive care unit patients on continuous venovenous haemodiafiltration: an observational study. J Antimicrob Chemother. 2012;67(10):2459–62.

    Article  CAS  PubMed  Google Scholar 

  68. Falcone M, Russo A, Cassetta MI, Lappa A, Tritapepe L, Fallani S, et al. Daptomycin serum levels in critical patients undergoing continuous renal replacement. J Chemother. 2012;24(5):253–6.

    Article  CAS  PubMed  Google Scholar 

  69. Wenisch JM, Meyer B, Fuhrmann V, Saria K, Zuba C, Dittrich P, et al. Multiple-dose pharmacokinetics of daptomycin during continuous venovenous haemodiafiltration. J Antimicrob Chemother. 2012;67(4):977–83.

    Article  CAS  PubMed  Google Scholar 

  70. Preiswerk B, Rudiger A, Fehr J, Corti N. Experience with daptomycin daily dosing in ICU patients undergoing continuous renal replacement therapy. Infection. 2013;41(2):553–7.

    Article  CAS  PubMed  Google Scholar 

  71. Corti N, Rudiger A, Chiesa A, Marti I, Jetter A, Rentsch K, et al. Pharmacokinetics of daily daptomycin in critically ill patients undergoing continuous renal replacement therapy. Chemotherapy. 2013;59(2):143–51.

    Article  CAS  PubMed  Google Scholar 

  72. Eyler RF, Vilay AM, Nader AM, Heung M, Pleva M, Sowinski KM, et al. Pharmacokinetics of ertapenem in critically ill patients receiving continuous venovenous hemodialysis or hemodiafiltration. Antimicrob Agents Chemother. 2014;58(3):1320–6.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Petejova N, Zahalkova J, Duricova J, Kacirova I, Brozmanova H, Urbanek K, et al. Gentamicin pharmacokinetics during continuous venovenous hemofiltration in critically ill septic patients. J Chemother. 2012;24(2):107–12.

    Article  CAS  PubMed  Google Scholar 

  74. Afshartous D, Bauer SR, Connor MJ, Aduroja OA, Amde M, Salem C, et al. Pharmacokinetics and pharmacodynamics of imipenem and meropenem in critically ill patients treated with continuous venovenous hemodialysis. Am J Kidney Dis. 2013;63(1):170–1.

    Article  PubMed  Google Scholar 

  75. Bauer SR, Salem C, Connor MJ Jr, Groszek J, Taylor ME, Wei P, et al. Pharmacokinetics and pharmacodynamics of piperacillin-tazobactam in 42 patients treated with concomitant CRRT. Clin J Am Soc Nephrol. 2012;7(3):452–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Asin-Prieto E, Rodriguez-Gascon A, Troconiz IF, Soraluce A, Maynar J, Sanchez-Izquierdo JA, et al. Population pharmacokinetics of piperacillin and tazobactam in critically ill patients undergoing continuous renal replacement therapy: application to pharmacokinetic/pharmacodynamic analysis. J Antimicrob Chemother. 2014;69(1):180–9.

    Article  CAS  PubMed  Google Scholar 

  77. Varghese JM, Jarrett P, Boots RJ, Kirkpatrick CM, Lipman J, Roberts JA. Pharmacokinetics of piperacillin and tazobactam in plasma and subcutaneous interstitial fluid in critically ill patients receiving continuous venovenous haemodiafiltration. Int J Antimicrob Agents. 2014;43(4):343–8.

    Article  CAS  PubMed  Google Scholar 

  78. Beumier M, Roberts JA, Kabtouri H, Hites M, Cotton F, Wolff F, et al. A new regimen for continuous infusion of vancomycin during continuous renal replacement therapy. J Antimicrob Chemother. 2013;68(12):2859–65.

    Article  CAS  PubMed  Google Scholar 

  79. Covajes C, Scolletta S, Penaccini L, Ocampos-Martinez E, Abdelhadii A, Beumier M, et al. Continuous infusion of vancomycin in septic patients receiving continuous renal replacement therapy. Int J Antimicrob Agents. 2013;41(3):261–6.

    Article  CAS  PubMed  Google Scholar 

  80. Udy AA, Covajes C, Taccone FS, Jacobs F, Vincent JL, Lipman J, et al. Can population pharmacokinetic modelling guide vancomycin dosing during continuous renal replacement therapy in critically ill patients? Int J Antimicrob Agents. 2013;41(6):564–8.

    Article  CAS  PubMed  Google Scholar 

  81. Paciullo CA, Harned KC, Davis GA, Connor MJ Jr, Winstead PS. Vancomycin clearance in high-volume venovenous hemofiltration. Ann Pharmacother. 2013;47(3):e14.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick T. Murray MB, BCh, BAO, MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gallagher, H., Murray, P. (2016). Drug Dosing in Continuous Renal Replacement Therapy (CRRT). In: Magee, C., Tucker, J., Singh, A. (eds) Core Concepts in Dialysis and Continuous Therapies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7657-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7657-4_19

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7655-0

  • Online ISBN: 978-1-4899-7657-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics