Skip to main content
Log in

Mapping of quantitative trait loci for fiber and lignin contents from an interspecific cross Oryza sativa × Oryza rufipogon

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Rice straw is always regarded as a by-product of rice production, but it could be a significant energy source for ruminant animals. Knowledge of the genetic variation and genetic architecture of cell wall traits will facilitate rice breeders by improving relevant traits through selective breeding and genetic engineering. The common wild rice, Oryza rufipogon Griff., which is considered to be the progenitor of Oryza sativa, has been widely utilized for the identification of genes of agronomic importance for rice genetic improvement. In the present study, the mapping of quantitative trait loci (QTLs) for acid detergent fiber (ADF), neutral detergent fiber (NDF), acid detergent lignin (ADL), and ADL/NDF ratio was carried out in two environments using a backcrossed inbred line (BIL) population derived from a cross between the recurrent parent Xieqingzao B (XB) and an accession of Dongxiang wild rice (DWR). The results indicated that all four traits tested were continuously distributed among the BILs, but many BILs showed transgressive segregation. A total of 16 QTLs were identified for the four traits, but no QTLs were in common in two environments, suggesting that environment has dramatic effects on fiber and lignin syntheses. Compared to the QTL positions for grain yield-related traits, there were no unfavorable correlations between grain yield components and cell wall traits in this population. The QTLs identified in this study are useful for the development of dual-purpose rice varieties that are high in grain yield and are also high in straw quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Haleem, H., Bowman, J., Giroux, M., Kanazin, V., Talbert, H., Surber, L., Blake, T., 2010. Quantitative trait loci of acid detergent fiber and grain chemical composition in hulled×hull-less barley population. Euphytica, 172(3):405–418. [doi:10.1007/s10681-009-0066-6]

    Article  CAS  Google Scholar 

  • Agbagla-Dohnani, A., Noziere, P., Clement, G., Doreau, M., 2001. In sacco degradability, chemical and morphological composition of 15 varieties of European rice straw. Anim. Feed Sci. Technol., 94(1–2):15–27. [doi:10.1016/S0377-8401(01)00296-6]

    Article  Google Scholar 

  • Bao, J.S., Jin, L., Shen, Y., Xie, J.K., 2007. Genetic mapping of quantitative trait loci associated with fiber and lignin content in rice. Cereal Res. Commun., 35(1):23–30. [doi:10.1556/CRC.35.2007.1.4]

    Article  CAS  Google Scholar 

  • Barrière, Y., Thomas, J., Denoue, D., 2008. QTL mapping for lignin content, lignin monomeric composition, p-hydroxycinnamate content, and cell wall digestibility in the maize recombinant inbred line progeny F838×F286. Plant Sci., 175(4):585–595. [doi:10.1016/j.plantsci.2008.06.009]

    Article  Google Scholar 

  • Barrière, Y., Méchin, V., Lafarguette, F., Manicacci, D., Guillon, F., Wang, H., Lauressergues, D., Pichon, M., Bosio, M., Tatout, C., 2009. Toward the discovery of maize cell wall genes involved in silage quality and capacity to biofuel production. Maydica, 54(2/3):161–198.

    Google Scholar 

  • Cardinal, A.J., Lee, M., Moore, K.J., 2003. Genetic mapping and analysis of quantitative trait loci affecting fiber and lignin content in maize. Theor. Appl. Genet., 106(5): 866–874. [doi:10.1007/s00122-002-1136-5]

    PubMed  CAS  Google Scholar 

  • Chen, H., Qian, N., Guo, W., Song, Q., Li, B., Deng, F., Dong, C., Zhang, T., 2009. Using three overlapped RILs to dissect genetically clustered QTL for fiber strength on Chro. D8 in upland cotton. Theor. Appl. Genet., 119(4):605–612. [doi:10.1007/s00122-009-1070-x]

    Article  PubMed  Google Scholar 

  • Chen, J., Huang, D.R., Wang, L., Liu, G.J., Zhuang, J.Y., 2010. Identification of quantitative trait loci for resistance to whitebacked planthopper, Sogatella furcifera, from an interspecific cross Oryza sativa×O. rufipogon. Breed. Sci., 60(2):153–159. [doi:10.1270/jsbbs.60.153]

    Article  Google Scholar 

  • Cogan, N.O.I., Smith, K.F., Yamada, T., Francki, M.G., Vecchies, A.C., Jones, E.S., Spangenberg, G.C., Forster, J.W., 2005. QTL analysis and comparative genomics of herbage quality traits in perennial ryegrass (Lolium perenne L.). Theor. Appl. Genet., 110(2):364–380. [doi:10.1007/s00122-004-1848-9]

    Article  PubMed  CAS  Google Scholar 

  • Dong, C.F., Cai, Q.S., Wang, C.L., Harada, J., Nemoto, K., Shen, Y.X., 2008. QTL analysis for traits associated with feeding value of straw in rice (Oryza sativa L.). Rice Sci., 15(3):195–200. [doi:10.1016/S1672-6308(08)60042-6]

    Article  Google Scholar 

  • González-Martínez, S.C., Wheeler, N.C., Ersoz, E., Nelson, C.D., Neale, D.B., 2007. Association genetics in Pinus taeda L. I. Wood property traits. Genetics, 175(1):399–409. [doi:10.1534/genetics.106.061127]

    Article  PubMed  Google Scholar 

  • Grando, S., Baum, M., Ceccarelli, S., Goodchild, A., El-Haramein, F.L., Jahoor, A., Backes, G., 2005. QTL for straw quality characteristics identified in recombinant inbred lines of a Hordeum vulgare×H. spontaneum cross in a Mediterranean environment. Theor. Appl. Genet., 110(4):688–695. [doi:10.1007/s00122-004-1894-3]

    Article  PubMed  CAS  Google Scholar 

  • Huang, D.R., Chen, J., Hou, L.J., Fan, Y.Y., Zhuang, J.Y., 2008. Identification of QTLs for yield traits in the BC1F5 population of Xieqingzao B//Xieqingzao B/Dongxiang wild rice. J. Agric. Biotech., 16:977–982.

    CAS  Google Scholar 

  • Kong, X.L., Xie, J.K., Wu, X.L., Huang, Y.J., Bao, J.S., 2005. Rapid prediction of acid detergent fiber,neutral detergent fiber, and acid detergent lignin of rice materials by near-infrared spectroscopy. J. Agric. Food Chem., 53(8): 2843–2848. [doi:10.1021/jf047924g]

    Article  PubMed  CAS  Google Scholar 

  • Krakowsky, M.D., Lee, M., Coors, J.G., 2005. Quantitative trait loci for cell-wall components in recombinant inbred lines of maize (Zea mays L.). I: stalk tissue. Theor. Appl. Genet., 111(2):337–346. [doi:10.1007/s00122-005-2026-4]

    Article  PubMed  CAS  Google Scholar 

  • Krakowsky, M.D., Lee, M., Coors, J.G., 2006. Quantitative trait loci for cell wall components in recombinant inbred lines of maize (Zea mays L.). II: leaf sheath tissue. Theor. Appl. Genet., 112(4):717–726. [doi:10.1007/s00122-005-0175-0]

    Article  PubMed  CAS  Google Scholar 

  • Li, X., Weng, J.K., Chapple, C., 2008. Improvement of biomass through lignin modification. Plant J., 54(4):569–581. [doi:10.1111/j.1365-313X.2008.03457.x]

    Article  PubMed  CAS  Google Scholar 

  • Lorenz, A.J., Coors, J.G., Hansey, C.N., Kaeppler, S.M., de Leon, N., 2010. Genetic analysis of cell wall traits relevant to cellulosic ethanol production in maize (Zea mays L.). Crop Sci., 50(3):842–852. [doi:10.2135/cropsci2009.04.0168]

    Article  CAS  Google Scholar 

  • McCouch, S.R., Cho, Y.G., Yano, M., Paul, E., Blinstrub, M., 1997. Report on QTL nomenclature. Rice Genet. Newslett., 14:11–13.

    Google Scholar 

  • Méchin, V., Argillier, O., Hebert, Y., Guingo, E., Moreau, L., Charcosset, A., Barriere, Y., 2001. Genetic analysis and QTL mapping of cell wall digestibility and lignification in silage maize. Crop Sci., 41(3):690–697. [doi:10.2135/cropsci2001.413690x]

    Article  Google Scholar 

  • Putun, A.E., Apaydin, E., Putun, E., 2004. Rice straw as a bio-oil source via pyrolysis and steam pyrolysis. Energy, 29(12–15):2171–2180. [doi:10.1016/j.energy.2004.03.020]

    Article  CAS  Google Scholar 

  • Tian, F., Li, D.J., Fu, Q., Zhu, Z.F., Fu, Y.C., Wang, X.K., Sun, C.Q., 2006. Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (O. sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor. Appl. Genet., 112(3):570–580. [doi:10.1007/s00122-005-0165-2]

    Article  PubMed  CAS  Google Scholar 

  • Truntzler, M., Barrière, Y., Sawkins, M.C., Lespinasse, D., Betran, J., Charcosset, A., Moreau, L., 2010. Meta-analysis of QTL involved in silage quality of maize and comparison with the position of candidate genes. Theor. Appl. Genet., 121(8):1465–1482. [doi:10.1007/s00122-010-1402-x]

    Article  PubMed  CAS  Google Scholar 

  • van Soest, P.J., 1994. Nutritional Ecology of the Ruminant, 2nd Ed. Cornell University Press, Ithaca, NY, p.108–121.

    Google Scholar 

  • Wang, S., Basten, C.J., Zeng, Z.B., 2005. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC, USA. Available from http://statgen.ncsu.edu/qtlcart/WQTLCart.htm [Accessed on June 30, 2009].

    Google Scholar 

  • Wu, J., Gutierrez, O.A., Jenkins, J.N., McCarty, J.C., Zhu, J., 2009. Quantitative analysis and QTL mapping for agronomic and fiber traits in an RI population of upland cotton. Euphytica, 165(2):231–245. [doi:10.1007/s10681-008-9748-8]

    Article  Google Scholar 

  • Xie, J.K., Wu, X.L., Jin, L., Wan, Y., Huang, Y.J., Bao, J.S., 2006. Identification of simple sequence repeat (SSR) markers for acid detergent fiber in rice straw by bulked segregant analysis. J. Agric. Food Chem., 54(20):7616–7620. [doi:10.1021/jf061432h]

    Article  PubMed  CAS  Google Scholar 

  • Xie, J., Agrama, H.A., Kong, D., Zhuang, J., Hu, B., Wan, Y., Yan, W., 2010. Genetic diversity associated with conservation of endangered Dongxiang wild rice (Oryza rufipogon). Genet. Resour. Crop Evol., 57(4):597–609. [doi:10.1007/s10722-009-9498-z]

    Article  Google Scholar 

  • Xiong, Y., Fei, S.Z., Brummer, E.C., Moore, K.J., Barker, R.E., Jung, G., Curley, J., Warnke, S.E., 2006. QTL analyses of fiber components and crude protein in an annual×perennial ryegrass interspecific hybrid population. Mol. Breed., 18(4):327–340. [doi:10.1007/s11032-006-9034-1]

    Article  CAS  Google Scholar 

  • Zhang, X., Zhou, S.X., Fu, Y.C., Su, Z., Wang, X.K., Sun, C.Q., 2006. Identification of a drought tolerant introgression line derived from dongxiang common wild rice (O. rufipogon Griff.). Plant Mol. Biol., 62(1–2):247–259. [doi:10.1007/s11103-006-9018-x]

    Article  PubMed  CAS  Google Scholar 

  • Zhou, S.X., Tian, F., Zhou, Z.F., Fu, Y.C., Wang, X.K., Sun, C.Q., 2006. Identification of quantitative trait loci controlling drought tolerance at seedling stage in Chinese Dongxiang common wild rice (Oryza rufipogon Griff.). Acta Genet. Sin., 33(6):551–558. [doi:10.1016/S0379-4172(06)60084-X]

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-song Bao.

Additional information

The two authors contributed equally to this work

Project supported by the National Basic Research Program (973) of China (No. 2002CCC00800), the Jiangxi Provincial Inviting Tender Project for Principal Research Topic (No. 20068), and the Ministry of Agriculture of China (Nos. 200803034 and 201103007)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Jk., Kong, Xl., Chen, J. et al. Mapping of quantitative trait loci for fiber and lignin contents from an interspecific cross Oryza sativa × Oryza rufipogon . J. Zhejiang Univ. Sci. B 12, 518–526 (2011). https://doi.org/10.1631/jzus.B1000299

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1000299

Key words

CLC number

Navigation