Skip to main content
Log in

Using three overlapped RILs to dissect genetically clustered QTL for fiber strength on Chro.D8 in Upland cotton

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Fiber strength is an important trait among cotton fiber qualities due to ongoing changes in spinning technology. Major quantitative trait loci (QTL) for fiber quality enable molecular marker-assisted selection (MAS) to effectively improve fiber quality of cotton cultivars. We previously identified a major QTL for fiber strength derived from 7235 in Upland cotton. In the present study, in order to fine-map fiber strength QTL, we chose three recombinant inbred lines (RIL), 7TR-133, 7TR-132, and 7TR-214, developed from a cross between 7235 and TM-1 for backcrossing to TM-1 to develop three large mapping populations. Phenotypic data for fiber strength traits were collected in Nanjing (JES/NAU) and Xinjiang (BES/XJ) in 2006 and 2007. Three simple sequence repeat (SSR) genetic linkage maps on Chro.24(D8) were constructed using these three backcrossed populations. The SSR genetic maps were constructed using 907 individuals in (7TR-133 × TM-1)F2 (Pop A), 670 in (7TR-132 × TM-1)F2 (Pop B), and 940 in (7TR-214 × TM-1)F2 (Pop C). The average distance between SSR loci was 0.62, 1.7, and 0.56 cM for the three maps. MapQTL 5 software detected five-clustered QTL (2.5 < LOD < 29.8) on Chro.D8 for fiber strength following analysis of three RIL backcrossed F2/F2:3 progenies at JES/NAU and BES/XJ over 2 years. Five QTL for fiber strength exhibited a total phenotypic variance (PV) of 28.8–59.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Benedict CR, Kohel RJ, Lewis HL (1999) Cotton fiber quality. In: Smith WC (ed) Cotton: origin, history, technology, and production. Wiley, New York, pp 269–288

    Google Scholar 

  • Deussen H (1992) Improved cotton fiber properties: the textile industry’s key to success in global competition. In: Proc cotton fiber cellulose: structure, function and utilization conference. Memphis, National Cotton Council of America, Tennessee, pp 43–64

  • Guo WZ, Zhang TZ, Ding YZ, Zhu YC, Shen XL, Zhu XF (2005) Molecular marker assisted selection and pyramiding of two QTL for fiber strength in Upland cotton. Acta Genetic Sinica 32(12):1275–1285

    CAS  Google Scholar 

  • Guo WZ, Cai CP, Wang CP, Han ZG, Song XL, Wang K, Niu XW, Wang C, Lu KY, Ben S, Zhang TZ (2007) A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics 176:527–541

    Article  PubMed  CAS  Google Scholar 

  • Han ZG, Guo WZ, Song XL, Zhang TZ (2004) EST derived microsatellites from diploid A-genome Gossypium arboreum and their genetic mapping in AD allotetraploid cotton. Mol Gen Genet 272:308–327

    CAS  Google Scholar 

  • Han ZG, Wang CB, Song XL, Guo WZ, Guo JY, Li CH, Chen XY, Zhang TZ (2006) Characteristics, development and mapping of Gossypium hirsutum derived EST-SSR in allotetraploid cotton. Theor Appl Genet 112:430–439

    Article  PubMed  CAS  Google Scholar 

  • Jiang CX, Wright RJ, El-Zik KM, Paterson AH (1998) Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci USA 95:4419–4424

    Article  PubMed  CAS  Google Scholar 

  • Kohel RJ, Richmond TR, Lewis CF (1970) Texas marker-1. Description of a genetic standard for Gossypium hirsutum L. Crop Sci 10:670–671

    Article  Google Scholar 

  • Kohel RJ, Yu J, Park YH, Lazo GR (2001) Molecular mapping and characterization of traits controlling fiber quality in cotton. Euphytica 121:163–172

    Article  CAS  Google Scholar 

  • Lacape JM, Nguyen TB, Thibivilliers S, Bojinnov TB, Courtois B, Cantrell RG, Burr B, Hau B (2003) A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population. Genome 46:612–626

    Article  PubMed  CAS  Google Scholar 

  • Lacape JM, Nguyen TB, Courtois B, Belot JL, Giband M, Gourlot JP, Gawryziak G, Roques S, Hau B (2005) QTL analysis of cotton fiber quality using multiple Gossypium hirsutum × Gossypium barbadense backcross generation. Crop Sci 45:123–140

    CAS  Google Scholar 

  • McCouch SR, Cho YG, Yano PE, Blinstrub M, Morishima H, Kinoshita T (1997) Report on QTL nomenclature. Rice Genet Newslett 14:11–13

    Google Scholar 

  • Mei M, Syed NH, Gao W, Thaxton PM, Smith CW, Stelly DM, Chen ZJ (2004) Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theor Appl Genet 108:280–291

    Article  PubMed  CAS  Google Scholar 

  • Park YH, Alabadt MS, Ulloa M, Sicker B, Wilkins TA, Yu J, Stelly DM, Kohel RJ, El-Shihy OM, Cantrell RG (2005) Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population. Mol Genet Genomics 274:428–441

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Lander SM, Hewitt JD, Peterson S, Lincoln SE, Tanksely SD (1988) Resolution of quantitative traits into Mendelian factors by using a com plete linkage map of restriction fragment length polymorphism. Nature 335:721–726

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11(2):122–127

    Article  CAS  Google Scholar 

  • Paterson AH, Saranga Y, Menz M, Jiang CX, Wright RJ (2003) QTL analysis of genotype × environment interaction affecting cotton fiber quality. Theor Appl Genet 106:384–396

    PubMed  CAS  Google Scholar 

  • Qian SY, Huang JQ, Peng YT, Zhou BL, Ying MC, Shen DZ, Liu GL, Hu TX, Xu YJ, Gu LM, Ni WC, Chen S (1992) Studies on the hybrid of G. hirsutum L. and G. anomalum Wawr. & Peyr. and application in breeding. Sci Agric Sinica 25:44–51

    Google Scholar 

  • SAS institute (1989) SAS/STAT user’s guide version 6, 4th edn. SAS Institute, Cary

  • Shappley ZW, Jenkins JN, Zhu J, McCarty JC (1998) Quantitative trait loci associated with agronomic and fiber traits of Upland cotton. J Cotton Sci 2:153–163

    CAS  Google Scholar 

  • Shen XL, Guo WZ, Zhu XF, Yuan YL, Yu JZ, Kohel RJ, Zhang TZ (2005) Molecular mapping of QTL for fiber qualities in three diverse lines in Upland cotton using SSR markers. Mol Breed 15:169–181

    Article  CAS  Google Scholar 

  • Shen XL, Guo WZ, Lu QX, Zhu XF, Yuan YL, Zhang TZ (2007) Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton. Euphytica 155:371–380

    Article  CAS  Google Scholar 

  • Ulloa M, Meredith WR (2000) Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population. J Cotton Sci 4:161–170

    CAS  Google Scholar 

  • Ulloa M, Cantrell RG, Pency RG (2000) QTL analysis of stomatal conductance and relationship to lint yield in an interspecific cotton. J Cotton Sci 4:10–18

    CAS  Google Scholar 

  • Ulloa M, Meredith WR, Shapplet ZW, Kahler AL (2002) RFLP genetic linkage maps from four F2:3 population and a joinmap of Gossypium hirsutum L. Thero Appl Genet 104:200–208

    Article  CAS  Google Scholar 

  • Ulloa M, Saha S, Jenkin N, Meredith WR, McCarty JC, Stelly DM (2005) Chromosomal assignment of RFLP linkage groups harboring important QTL on an intraspecific cotton (Gossypium hirsutum L.) joinmap. J Hered 96:132–144

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW (2004) MapQTL version 5.0: software for the mapping of quantitative trait loci in experiment population. Plant Research International, Wageningen

    Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) Software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Wang CB, Guo WZ, Cai CP, Zhang TZ (2006) Characterization, development and exploitation of EST-derived microsatellites in Gossypium raimondii. Ulbrich Chin Sci Bull 51:557–561

    Article  CAS  Google Scholar 

  • Yin JM, Wu YT, Zhang J, Zhang TZ, Guo WZ, Zhu XF (2002) Tagging and mapping of QTL controlling lint yield and yield components in upland cotton (Gossypium hirsutum L.) using SSR and RAPD markers. Chin J Biotechnol 18:162–166

    CAS  Google Scholar 

  • Zhang J, Wu YT, Guo WZ, Zhang TZ (2000) Fast screening of SSR markers in cotton with PAGE/silver staining. Cotton Sci Sinica 12:267–269

    CAS  Google Scholar 

  • Zhang J, Guo WZ, Zhang TZ (2002) Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population. Theor Appl Genet 105:1166–1174

    Article  PubMed  CAS  Google Scholar 

  • Zhang TZ, Yuan YL, Yu J, Guo WZ, Kohel RJ (2003) Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection. Theor Appl Genet 106:262–268

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported in part by grants from the High-tech program 863 (2006AA100105), Jiangsu province key project (BE2008310), and the 111 Project (B08025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianzhen Zhang.

Additional information

Communicated by F. Muehlbauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Qian, N., Guo, W. et al. Using three overlapped RILs to dissect genetically clustered QTL for fiber strength on Chro.D8 in Upland cotton. Theor Appl Genet 119, 605–612 (2009). https://doi.org/10.1007/s00122-009-1070-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1070-x

Keywords

Navigation