Skip to main content
Log in

Property deterioration in reactive elastomeric terpolymer modified binders during storage at elevated temperatures

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This study investigates the effect of storage temperature, storage time, base binder, polymer type, and poly-phosphoric acid (PPA) concentration on the properties of commercial-grade reactive elastomeric terpolymer-modified binders (RET-MBs). To mimic the practical storage conditions, RET-MBs were contained in sealed metal tubes and stored in a forced convection oven at temperatures 120, 135, 150, and 165 °C for up to 14 days. The results show that the deterioration in conventional and rheological properties of RET-MBs was noticeable even at a low storage temperature of 135 °C. At storage temperatures of 150 and 165 °C, significant property erosion was observed within the first three days of storage. After 7 days of storage at 150 °C, the softening point temperature, the PG upper temperature (Tu), and percent elastic recovery values decrease by 4 °C, 3.5 °C, and 45%, respectively. One PG-grade drop can occur after 3–7 days of storage at 150 and 165 °C, which can result in the RET-MB failing the required specification. FTIR analysis of the solution-cast films of RET polymer with PPA reveals the interaction of the epoxy ring with PPA molecules to form phosphate ester linkage during storage, due to which the interaction between RET polymer and binder molecules reduces, resulting in severe property erosion during storage. The result demonstrates that RET-MBs should be stored and transported at temperatures < 135 °C, and this specific storage requirement must be mentioned in the storage and handling guidelines for RET-MBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bulatović VO, Rek V, Marković KJ (2014) Effect of polymer modifiers on the properties of bitumen. J Elastomers Plast 46:448–469. https://doi.org/10.1177/0095244312469964

    Article  CAS  Google Scholar 

  2. Liu S, Zhou S, Peng A (2020) Evaluation of polyphosphoric acid on the performance of polymer-modified asphalt binders. J Appl Polym Sci 137:1–11. https://doi.org/10.1002/app.48984

    Article  CAS  Google Scholar 

  3. Polacco G, Stastna J, Biondi D et al (2004) Rheology of asphalts modified with glycidylmethacrylate functionalized polymers. J Colloid Interface Sci 280:366–373. https://doi.org/10.1016/j.jcis.2004.08.043

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Da Silva PG, Morales AR (2017) Modification of thermal and rheological behavior of asphalt binder by the addition of an ethylene-methyl acrylate-glycidyl methacrylate terpolymer and polyphosphoric acid. Polimeros 27:298–308. https://doi.org/10.1590/0104-1428.2460

    Article  Google Scholar 

  5. Jasso M, Hampl R, Vacin O et al (2015) Rheology of conventional asphalt modified with SBS, Elvaloy, and polyphosphoric acid. Fuel Process Technol 140:172–179. https://doi.org/10.1016/j.fuproc.2015.09.002

    Article  CAS  Google Scholar 

  6. Geçkil T (2019) Physical, chemical, microstructural, and rheological properties of reactive terpolymer-modified bitumen. Materials 12:13–17. https://doi.org/10.3390/ma12060921

    Article  CAS  Google Scholar 

  7. Jasso M (2016) The mechanism of modification and properties of polymer modified asphalts, (PhD Thesis). University of Calgary, Canada

  8. Topal A (2010) Evaluation of the properties and microstructure of plastomeric polymer modified bitumens. Fuel Process Technol 91:45–51. https://doi.org/10.1016/j.fuproc.2009.08.007

    Article  CAS  Google Scholar 

  9. Inocente Domingos MD, Faxina AL (2015) Rheological analysis of asphalt binders modified with Elvaloy® terpolymer and polyphosphoric acid on the multiple stress creep and recovery test. Mater Struct/Materiaux et Constr 48:1405–1416. https://doi.org/10.1617/s11527-013-0242-y

    Article  CAS  Google Scholar 

  10. Becker Y, Méndez MP, Rodríguez Y (2001) Polymer modified asphalt. Vis Tecnol 9:40–50

    Google Scholar 

  11. Bulatovic VO, Rek V, Markovic J (2013) Rheological properties of bitumen modified with ethylene butylacrylate glycidylmethacrylate. Polym Eng Sci 54:1056–1065. https://doi.org/10.1002/pen

    Article  Google Scholar 

  12. Yadollahi G, Sabbagh Mollahosseini H (2011) Improving the performance of Crumb Rubber bitumen by means of Poly Phosphoric Acid (PPA) and Vestenamer additives. Constr Build Mater 25:3108–3116. https://doi.org/10.1016/j.conbuildmat.2010.12.038

    Article  Google Scholar 

  13. Gama DA, Rosa JM, De Melo TJA, Rodrigues JKG (2016) Rheological studies of asphalt modified with elastomeric polymer. Constr Build Mater 106:290–295. https://doi.org/10.1016/j.conbuildmat.2015.12.142

    Article  CAS  Google Scholar 

  14. Joohari IB, Maniam S, Giustozzi F (2023) Enhancing the storage stability of SBS-plastic waste modified bitumen using reactive elastomeric terpolymer. Int J Pavement Res Technol 16:304–318. https://doi.org/10.1007/s42947-021-00132-z

    Article  Google Scholar 

  15. Keyf S, Ismail O, Çorbacioǧlu BD (2007) Polymer-modified bitumen using ethylene terpolymers. Pet Sci Technol 25:915–923. https://doi.org/10.1080/10916460500411812

    Article  CAS  Google Scholar 

  16. Selvavathi V, Sekar VA, Sriram V, Sairam B (2002) Modifications of bitumen by elastomer and reactive polymer - A comparative study. Pet Sci Technol 20:535–547. https://doi.org/10.1081/LFT-120003577

    Article  CAS  Google Scholar 

  17. Li X, Clyne T, Reinke G et al (2011) Laboratory evaluation of asphalt binders and mixtures containing polyphosphoric acid. Transp Res Record. https://doi.org/10.3141/2210-06

    Article  Google Scholar 

  18. MRTS18 (2020) Transport and Main Roads Specifications MRTS18 Polymer Modified Binder. Queensland Government, Brisbane (2020), Q., Australia (Ed.). Queensland Government

  19. AAPA (Australian Asphalt Pavement Association) (2019) Guide to the heating and storage of binders for sprayed sealing and hot mixed asphalt. AAPA advisory note 7. Australian Asphalt Pavement Association, Australia

  20. AAPA (Australian Asphalt Pavement Association) (2004) Code of Practice : Manufacture, Storage and Handling of Polymer Modified Binders. Australian Asphalt Pavement Association, Australia

  21. Singh SK, Kumar Y, Ravindranath SS (2018) Thermal degradation of SBS in bitumen during storage: Influence of temperature, SBS concentration, polymer type and base bitumen. Polym Degrad Stab 147:64–75. https://doi.org/10.1016/j.polymdegradstab.2017.11.008

    Article  CAS  Google Scholar 

  22. Urquhart R, Woodall E, Malone S, Lourensz S (2016) Effects of hot storage on polymer modified binder properties and field performance. In: 6th Eurasphalt & Eurobitume Congress. Prague, Czech Republic

  23. Islam SS, Singh SK, Ransinchung GD, Ravindranath SS (2021) Effect of property deterioration in SBS modified binders during storage on the performance of asphalt mix. Constr Build Mater 272:121644. https://doi.org/10.1016/j.conbuildmat.2020.121644

    Article  CAS  Google Scholar 

  24. Islam SS, Singh SK, Rai GR, Ravindranath SS (2022) Performance deterioration of SBS-modified asphalt mix: impact of elevated storage temperature and SBS concentration of modified binder. J Mater Civ Eng 34:1–14. https://doi.org/10.1061/(asce)mt.1943-5533.0004092

    Article  CAS  Google Scholar 

  25. De Carcer ÍA, Masegosa RM, Teresa Viñas M et al (2014) Storage stability of SBS/sulfur modified bitumens at high temperature: Influence of bitumen composition and structure. Constr Build Mater 52:245–252. https://doi.org/10.1016/j.conbuildmat.2013.10.069

    Article  Google Scholar 

  26. Gama DA, Yan Y, Rodrigues JKG, Roque R (2018) Optimizing the use of reactive terpolymer, polyphosphoric acid, and high-density polyethylene to achieve asphalt binders with superior performance. Constr Build Mater 169:522–529. https://doi.org/10.1016/j.conbuildmat.2018.02.206

    Article  CAS  Google Scholar 

  27. Bessa IS, Takahashi MM, Vasconcelos KL, Bernucci LLB (2019) Characterization of neat and modified asphalt binders and mixtures in relation to permanent deformation. Sci Eng Compos Mater 26:379–387. https://doi.org/10.1515/secm-2019-0022

    Article  CAS  Google Scholar 

  28. Kaci M, Kaid N, Boukerrou A (2012) Influence of ethylene-butyl acrylate-glycidyl methacrylate terpolymer on compatibility of ethylene vinyl acetate copolymer / Olive Husk flour composites. Compos Interfaces 18:295–307. https://doi.org/10.1163/092764411X584487

    Article  ADS  CAS  Google Scholar 

  29. Silverstein RM, Webster FX, Kiemle DJ (1981) Spectrometric identification of organic compounds, 7th ed. John Wiley and Sons, Inc.

  30. Fu Y, Sun D, Liu X, et al. (2015) The curing kinetic analysis of epoxy-based on FT-IR. In: 3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME 2015). pp 286– 290

  31. Cholake ST, Moran G, Bai Y et al (2015) Physico-chemical characterization of novel epoxy matrix system reinforced with recycled short milled carbon fibre. J Minerals Mater Charact Eng 3:373–389

    CAS  Google Scholar 

  32. Dow Reactive Elastomeric Terpolymer(RET) PMA production guide. The Dow Chemical Company

  33. Indian Road Congress (2010) Guidelines on the use of Modified Bitumen in Road Construction. India

  34. Kennedy TW, Huber GA, Harrigan ET, et al. (1994) Superior Performing Asphalt Pavements(Superpave): The Product of the SHRP- Asphalt Research Program. Washington

  35. Yildirim Y (2007) Polymer modified asphalt binders. Constr Build Mater 21:66–72. https://doi.org/10.1016/j.conbuildmat.2005.07.007

    Article  Google Scholar 

  36. Pandey A, Sohel S, Ransinchung IRNGD, Ravindranath SS (2022) Vital role of lower frequencies in the rheological evaluation of SBS modified binders. Mater Struct 55:1–17. https://doi.org/10.1617/s11527-022-01922-y

    Article  CAS  Google Scholar 

  37. Pandey A, Sohel S, Ransinchung GDRN, Ravindranath SS (2022) Quantifying the effect of SBS molecular structure on the upper service temperature rheological properties of modified binders. Constr Build Mater 352:128826. https://doi.org/10.1016/j.conbuildmat.2022.128826

    Article  CAS  Google Scholar 

  38. Singh SK, Pandey A, Sohel S et al (2020) Significance of frequency in quantifying the deterioration in the properties of SBS modified binders and rutting performance. Constr Build Mater 262:120872. https://doi.org/10.1016/j.conbuildmat.2020.120872

    Article  CAS  Google Scholar 

  39. Lu X (1998) Chemical and rheological evaluation of ageing properties of SBS polymer modified bitumens. Fuel 77:961–972

    Article  CAS  Google Scholar 

  40. Xing C, Liu L, Sheng J (2020) A new progressed mastic aging method and effect of fillers on SBS modified bitumen aging. Constr Build Mater 238:117732. https://doi.org/10.1016/j.conbuildmat.2019.117732

    Article  CAS  Google Scholar 

  41. Eidelman N, Raghavan D, Forster AM et al (2004) Combinatorial approach to characterizing epoxy curing. Macromolecular Rapid Commun. https://doi.org/10.1002/marc.200300190

    Article  Google Scholar 

  42. Ybarra GO, Escola MA, Moina CA, Nin AC (2005) The determination of the degree of cure in epoxy paints by infrared spectroscopy. Polym Testing 24:572–575. https://doi.org/10.1016/j.polymertesting.2005.02.013

    Article  CAS  Google Scholar 

  43. Shvedov VP, Orlov YF, Shevyakov AM (1965) Spectra of phosphate esters in the 900–1400 cm-1 region. J Appl Spectrosc 2:36–38

    Article  ADS  Google Scholar 

  44. Jia P, Hu L, Zhang M, Zhou Y (2016) TG-FTIR and TG-MS analysis applied to study the flame retardancy of PVC – castor oil-based chlorinated phosphate ester blends. J Therm Anal Calorim 124:1331–1339. https://doi.org/10.1007/s10973-015-5199-3

    Article  CAS  Google Scholar 

  45. Akbarzadeh K, Sabbagh O, Beck J, et al. (2004) Asphaltene Precipitation From Bitumen Diluted With n-Alkanes. In: The Canadian International Petroleum Conference. Calgary, Alberta, pp 1–4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sham S. Ravindranath.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Pandey, A., Ransinchung R. N., G.D. et al. Property deterioration in reactive elastomeric terpolymer modified binders during storage at elevated temperatures. Mater Struct 57, 32 (2024). https://doi.org/10.1617/s11527-024-02307-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-024-02307-z

Keywords

Navigation