Skip to main content

Passive film analysis and corrosion study of steel type 301 after mechanical deformation

Abstract

The electrochemical properties of the passive film formed on surface-modified 301 stainless steel (SS) were examined in the present study. After surface treatment, the passive film analysis was carried out via X-ray photoelectron spectroscopy (XPS) technique, while the surface microstructure of the samples was examined by scanning electron microscope analysis. With Cr 2p, Fe 2p, O 1s, Ni 2p, and C 1s as the principal spectra in the passive film, the Cr 2p spectrum shows two major peaks at 574.3 eV and 583.8 eV corresponding to Cr 2p3/2 (Cr in the metallic state) and Cr 2p1/2, respectively. The Fe 2p spectrum has two major peaks of 707.1 and 720.1 eV corresponding to Fe 2p3/2 (Fe in metallic state) and Fe 2p1/2 peaks, respectively, while the binding energies of 853.3 and 875.1 eV for the Ni 2p spectrum correspond to nickel in the metallic state. The XPS spectra revealed a higher percentage of Cr in the passive film of the treated 301 SS when compared with other elements. From the polarization results, the treated 301 SS possessed a lower corrosion current density of 1.401 mA/cm2 and higher corrosion potential of − 0.085 V.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The data that support the findings of this study are available on request from the author.

References

  1. Y. Lu, X. Liu, L. Wang, J. Yang, H. Xu, J. Ocean. Limnol. (2022). https://doi.org/10.1007/s00343-021-1168-9

    Article  Google Scholar 

  2. Y. Lin, J. Lu, L. Wang, T. Xu, Q. Xue, Acta Mater. 54, 5599 (2006)

    CAS  Article  Google Scholar 

  3. M.A.M. Ibrahim, S.S. Abd El Rehim, M.M. Hamza, Mater. Chem. Phys. 115, 80–85 (2009)

    CAS  Article  Google Scholar 

  4. N.R. Tao, M.L. Sui, J. Lu, K. Lu, Nanostruct. Mater 11, 433 (1999)

    CAS  Article  Google Scholar 

  5. X. Wu, N. Tao, Y. Hong, B. Xu, J. Lu, K. Lu, Acta Mater. 50, 2075 (2002)

    CAS  Article  Google Scholar 

  6. Z.C. Wang, F. Di-Franco, A. Seyeux, S. Zanna, V. Maurice, P. Marcus, J. Electrochem. Soc. 166, C3376–C3388 (2019)

    CAS  Article  Google Scholar 

  7. C. Dang, T.O. Olugbade, S. Fan, H. Zhang, L.L. Gao, J. Li, Y. Lu, Vacuum 156, 310–316 (2018)

    CAS  Article  Google Scholar 

  8. C. Dang, Y. Yao, T.O. Olugbade, L. Li, L. Wang, Thin Solid Films 653, 107–112 (2018)

    CAS  Article  Google Scholar 

  9. H. Zu, K. Chau, T.O. Olugbade, L. Pan, D.H. Chow, L. Huang, L. Zheng, W. Tong, X. Li, Z. Chen, X. He, R. Zhang, J. Mi, Y. Li, B. Dai, J. Wang, J. Xu, K. Liu, J. Lu, L. Qin, J. Mater. Sci. Technol. 63, 145–160 (2021)

    CAS  Article  Google Scholar 

  10. T.E. Abioye, I.S. Omotehinse, I.O. Oladele, T.O. Olugbade, T.I. Ogedengbe, World J. Eng. 17, 87–96 (2020)

    CAS  Article  Google Scholar 

  11. T.E. Abioye, T.O. Olugbade, T.I. Ogedengbe, J. Emerg. Trends Eng. Appl. Sci. 8, 225 (2017)

    CAS  Google Scholar 

  12. T.O. Olugbade, O.O. Omoniyi, B.O. Omiyale, J. Inst. Eng. (India): Ser. D 103, 141–147 (2022)

    CAS  Google Scholar 

  13. K. Wang, N.R. Tao, G. Liu, J. Lu, K. Lu, Acta. Mater. 54, 5281 (2006)

    CAS  Article  Google Scholar 

  14. T. Olugbade, Data Brief 25, 104033 (2019)

    Article  Google Scholar 

  15. T. Balusamy, S. Kumar, T.S.N. Sankara Narayanan, Corros. Sci. 52, 3826–3834 (2010)

    CAS  Article  Google Scholar 

  16. T. Balusamy, T.S.N. Sankara Narayanan, K. Ravichandran, I.S. Park, M.H. Lee, Corros. Sci. 74, 332–344 (2013)

    CAS  Article  Google Scholar 

  17. T.O. Olugbade, Anal. Lett. 54, 1055–1067 (2021)

    CAS  Article  Google Scholar 

  18. T.I. Ogedengbe, T.O. Olugbade, O. Olagunju, Br. J. Appl. Sci. Technol. 10, 1–11 (2015)

    Google Scholar 

  19. N.R. Tao, J. Lu, K. Lu, Mater. Sci. Forum 579, 91–108 (2008)

    CAS  Article  Google Scholar 

  20. T.O. Olugbade, J. Lu, Anal. Lett. 52, 2454–2471 (2019)

    CAS  Article  Google Scholar 

  21. H.Q. Sun, Y.N. Shi, M.X. Zhang, K. Lu, Acta Mater. 55, 975 (2007)

    CAS  Article  Google Scholar 

  22. T.O. Olugbade, J. Lu, Nano Mater. Sci. 2, 3–31 (2020)

    Article  Google Scholar 

  23. T.O. Olugbade, O.T. Ojo, B.O. Omiyale, E.O. Olutomilola, B.J. Olorunfemi, J. Braz. Soc. Mech. Sci. Eng. 43, 421 (2021)

    Article  Google Scholar 

  24. T. Mohammed, T.O. Olugbade, I. Nwankwo, J. Sci. Res. Rep. 10, 1–9 (2016)

    Google Scholar 

  25. T. Olugbade, J. Lu, in Twelfth International Conference on Fatigue Damage of Structural Materials, Cape Cod, Hyannis (2018)

  26. T.O. Olugbade, Corros. Rev. 38, 473–488 (2020)

    CAS  Article  Google Scholar 

  27. Z.J. Zheng, Y. Gao, Y. Gui, M. Zhu, Corros. Sci. 54, 60–67 (2012)

    CAS  Article  Google Scholar 

  28. T.O. Olugbade, T.E. Abioye, P.K. Farayibi, N.G. Olaiya, B.O. Omiyale, T.I. Ogedengbe, Anal. Lett. 54, 1588–1602 (2021)

    CAS  Article  Google Scholar 

  29. H.W. Chang, P.M. Kelly, Y.N. Shi, M.X. Zhang, Surf. Coat. Technol. 206, 3970–3980 (2012)

    CAS  Article  Google Scholar 

  30. T.O. Olugbade, B.O. Omiyale, O.T. Ojo, J. Mater. Eng. Perform. 31, 1707–1727 (2022)

    CAS  Article  Google Scholar 

  31. T.O. Olugbade, E.O. Olutomilola, B.J. Olorunfemi, Corros. Rev. (2022). https://doi.org/10.1515/corrrev-2021-0072

    Article  Google Scholar 

  32. T. Olugbade, J. Lu, in International Conference on Nanostructured Materials (NANO 2020) Australia, vol. 117 (2020)

  33. T.O. Olugbade, Chem. Afr. 5, 333–340 (2022)

    CAS  Article  Google Scholar 

  34. T. Olugbade, C. Liu, J. Lu, Adv. Eng. Mater. 21, 1900125 (2019)

    Article  Google Scholar 

  35. I.S. Zhidkov, A.I. Kukharenko, A.V. Makarov, R.A. Savrai, N.V. Gavrilov, S.O. Cholakh, E.Z. Kurmaevs, Surf. Coat. Technol. 386, 125492 (2020)

    CAS  Article  Google Scholar 

  36. N. Chung, Spectroscopy 33, 28–34 (2018)

    CAS  Google Scholar 

  37. L. Ma, F. Wiame, V. Maurice, P. Marcus, Corros. Sci. 140, 205–216 (2018)

    CAS  Article  Google Scholar 

  38. B. Adrien, D. Thomas, D. Nadège, N. Eric, D. Julien, L. Lydia, B. Christine, Surf. Interfaces 22, 100874 (2021)

    Article  Google Scholar 

  39. S. Detriche, S. Vivegnis, J.F. Vanhumbeeck, A. Felten, P. Louette, F. Renner, J. Delhalle, Z. Mekhalif, J. Electron Spectrosc. Relat. Phenom. 243, 146970 (2020)

    CAS  Article  Google Scholar 

  40. R. Natarajan, N. Palaniswamy, M. Natesan, V.S. Muralidharan, Open Corros. J. 2, 114–124 (2009)

    CAS  Article  Google Scholar 

  41. Z. Duan, F. Arjmand, L. Zhang, H. Abe, J. Nucl. Sci. Technol. 53, 1435–1446 (2016)

    CAS  Article  Google Scholar 

  42. M.S. Qurashi, Y. Cui, J. Wang, N. Dong, J. Bai, Y. Wu, P. Han, Int. J. Electrochem. Sci. 14, 10642–10656 (2019)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The author appreciates the support of the Centre for Advanced Structural Materials (CASM), Hong Kong SAR, as regards the SMAT technique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Temitope Olumide Olugbade.

Ethics declarations

Conflict of interest

The author reports no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Olugbade, T.O. Passive film analysis and corrosion study of steel type 301 after mechanical deformation. MRS Advances (2022). https://doi.org/10.1557/s43580-022-00327-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43580-022-00327-x