Skip to main content
Log in

A review on the corrosion fatigue strength of surface-modified stainless steels

  • Review
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Materials are often exposed to simultaneous actions of corrosive environment and repeated stress, which sometimes leads to a significant decrease in corrosion fatigue strength. Several attempts have been made in the past to investigate the fatigue cracks initiation and propagation process across different materials. However, the current knowledge is insufficient to address the combined response of corrosion reaction and repeated stress on the fatigue properties of stainless steels (SS) especially when they are subjected to surface treatments. The present paper reviews the relevant past work done to date on the fatigue and corrosion fatigue strengths of nanostructured SS. The corrosion fatigue strengths of SS can be improved by the combined effects of surface treatments and the associated compressive residual stresses. The corrosion fatigue mechanism reviewed in this paper explains in detail the major factors involved in predicting the fatigue life behaviour including residual stress, loading frequency, microstructures, work-hardening, surface topography, surface treatment processing parameters, and fracture surface. For future works, the factors that could improve the corrosion fatigue behaviour of nanostructured SS were also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Torres M, Voorwald H (2002) An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel. Int J Fatigue 24:877–886

    Article  Google Scholar 

  2. Olugbade TO, Lu J (2019) Enhanced corrosion properties of nanostructured 316 stainless steel in 0.6 M NaCl solution. J Bio Tribo Corros 5:38

    Article  Google Scholar 

  3. Badreddine J, Rouhaud E, Micoulaut M, Retraint D, Remy S, François M, Viot P, Doubre-Baboeuf G, Saunier DL, Desfontaine V (2011) Simulation and experimental approach for shot velocity evaluation in ultrasonic shot peening. Mécanique Ind 12:223–229

    Article  Google Scholar 

  4. Dang C, Yao Y, Olugbade TO, Li J, Wang L (2018) Effect of multi-interfacial structure on fracture resistance of composite TiSiN/Ag/TiSiN multilayer coating. Thin Solid Films 653:107–112

    Article  Google Scholar 

  5. Dang C, Olugbade TO, Fan S, Zhang H, Gao LL, Li J, Lu Y (2018) Direct quantification of mechanical responses of TiSiN/Ag multilayer coatings through uniaxial compression of micropillars. Vacuum 156:310–316

    Article  Google Scholar 

  6. Nalla R, Altenberger I, Noster U, Liu G, Scholtes B, Ritchie R (2003) On the influence of mechanical surface treatments—deep rolling and laser shock peening—on the fatigue behavior of Ti–6Al–4V at ambient and elevated temperatures. Mater Sci Eng A 355:216–230

    Article  Google Scholar 

  7. De los Rios ER, Walley A, Milan MT, Hammersley G (1995) Fatigue crack initiation and propagation on shot-peened surfaces in A316 stainless steel. Int J Fatigue 17:493–499

  8. Olugbade TO, Lu J (2020) Literature review on the mechanical properties of materials after surface mechanical attrition treatment (SMAT). Nano Mater Sci 2:3–31

    Article  Google Scholar 

  9. Olugbade T, Liu C, Lu J (2019) Enhanced passivation layer by Cr diffusion of 301 stainless steel facilitated by SMAT. Adv Eng Mater 21:1900125

    Article  Google Scholar 

  10. Olugbade TO, Lu J (2019) Characterization of the corrosion of nanostructured 17–4 PH stainless steel by surface mechanical attrition treatment (SMAT). Anal Lett 52:2454–2471

    Article  Google Scholar 

  11. Olugbade T (2019) Datasets on the corrosion behaviour of nanostructured AISI 316 stainless steel treated by SMAT. Data Br 25:104033

    Article  Google Scholar 

  12. Roland T, Retraint D, Lu K, Lu J (2006) Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scr Mater 54:1949–1954

    Article  Google Scholar 

  13. Padilla HA, Boyce BL (2010) A review of fatigue behavior in nanocrystalline metals. Exp Mech 50:5–23

    Article  Google Scholar 

  14. Hanlon T, Tabachnikova ED, Suresh S (2005) Fatigue behavior of nanocrystalline metals and alloys. Fatigue Damage Struct Mater 27:1147–1158

    Google Scholar 

  15. Gujba KA, Medraj M (2014) Laser peening process and its impact on materials properties in comparison with shot peening and ultrasonic impact peening. Dent Mater 7:7925–7974

    Google Scholar 

  16. Dalaei K, Karlsson B, Svensson LE (2011) Stability of shot peening induced residual stresses and their influence on fatigue lifetime. Mater Sci Eng A 528:1008–1015

    Article  Google Scholar 

  17. Kim JC, Cheong SK, Noguchi H (2013) Residual stress relaxation and low- and high-cycle fatigue behavior of shot-peened medium-carbon steel. Int J Fatigue 56:114–122

    Article  Google Scholar 

  18. John R, Buchanan DJ, Caton MJ, Jha SK (2010) Stability of shot peen residual stresses in IN100 subjected to creep and fatigue loading. Int J Fatigue 2:1887–1893

    Google Scholar 

  19. Shaw LL, Tian J, Ortiz AL, Dai K, Villegas JC, Liaw PK, Ren R, Klarstrom DL (2010) A direct comparison in the fatigue resistance enhanced by surface severe plastic deformation and shot peening in a C-2000 superalloy. Mater Sci Eng A 527:986–994

    Article  Google Scholar 

  20. Dalaei K, Karlsson B (2012) Influence of shot peening on fatigue durability of normalized steel subjected to variable amplitude loading. Int J Fatigue 38:75–83

    Article  Google Scholar 

  21. Pandey V, Rao GS, Chattopadhyay K, Santhi Srinivas NC, Singh V (2015) Effect of surface nanostructuring on LCF behavior of aluminum alloy 2014. Mater Sci Eng A 647:201–211

    Article  Google Scholar 

  22. Pandey V, Chattopadhyay K, Santhi Srinivas NC, Singh V (2017) Role of ultrasonic shot peening on low cycle fatigue behavior of 7075 aluminium alloy. Int J Fatigue 103:426–435

    Article  Google Scholar 

  23. Kumar S, Chattopadhyay K, Singh V (2017) Effect of ultrasonic shot peening on LCF behavior of the Ti–6Al–4V alloy. J Alloys Compd 724:187–197

    Article  Google Scholar 

  24. Chen G, Gao J, Cui Y, Gao H, Guo X, Wu S (2018) Effects of strain rate on the low cycle fatigue behavior of AZ31B magnesium alloy processed by SMAT. J Alloys Compd 735:536–546

    Article  Google Scholar 

  25. Li D, Chen HN, Xu H (2009) The effect of nanostructured surface layer on the fatigue behaviors of a carbon steel. Appl Surf Sci 255:3811–3816

    Article  Google Scholar 

  26. Villegas JC, Shaw LL, Dai K, Yuan W, Tian J, Liaw PK, Klarstrom DL (2005) Enhanced fatigue resistance of a nickel-based hastelloy induced by a surface nanocrystallization and hardening process. Philos Mag Lett 85:427–438

    Article  Google Scholar 

  27. Pham MS, Holdsworth SR, Janssens KGF, Mazza E (2013) Cyclic deformation response of AISI 316L at room temperature: mechanical behaviour, microstructural evolution, physically-based evolutionary constitutive modelling. Int J Plast 47:143–164

    Article  Google Scholar 

  28. Unal O, Varol R (2015) Surface severe plastic deformation of AISI 304 via conventional shot peening, severe shot peening and repeening. Appl Surf Sci 351:289–295

    Article  Google Scholar 

  29. Zhou J, Sun Z, Kanouté P, Retraint D (2018) Experimental analysis and constitutive modelling of cyclic behaviour of 316L steels including hardening/softening and strain range memory effect in LCF regime. Int J Plast 107:54–78

    Article  Google Scholar 

  30. Bagherifard S, Guagliano M (2012) Fatigue behavior of a low-alloy steel with nanostructured surface obtained by severe shot peening. Eng Fract Mech 81:56–68

    Article  Google Scholar 

  31. Zhang K, Wang ZB, Lu K (2017) Enhanced fatigue property by suppressing surface cracking in a gradient nanostructured bearing steel. Mater Res Lett 5:258–266

    Article  Google Scholar 

  32. Abioye TE, Omotehinse IS, Oladele IO, Olugbade TO, Ogedengbe TI (2020) Effects of post-weld heat treatments on the microstructure, mechanical and corrosion properties of gas metal arc welded 304 stainless steel. World J Eng 17(1):87–96

    Article  Google Scholar 

  33. Olugbade TO (2020) Electrochemical characterization of the corrosion of mild steel in saline following mechanical deformation. Anal Lett 54(2021):1055–1067

    Google Scholar 

  34. Arifvianto B, Suyitno M, Mahardika M (2012) Effects of surface mechanical attrition treatment (SMAT) on a rough surface of AISI 316L stainless steel. Appl Surf Sci 258:4538–4543

    Article  Google Scholar 

  35. Ortiz AL, Tian JW, Shaw LL, Liaw PK (2010) Experimental study of the microstructure and stress state of shot peened and surface mechanical attrition treated nickel alloys. Scr Mater 62:129–132

    Article  Google Scholar 

  36. Zu H, Chau K, Olugbade TO, Pan L, Chow DH, Huang L, Zheng L, Tong W, Li X, Chen Z, He X, Zhang R, Mi J, Li Y, Dai B, Wang J, Xu J, Liu K, Lu J, Qin L (2020) Comparison of modified injection molding and conventional machining in biodegradable behavior of perforated cannulated magnesium hip stents. J Mater Sci Technol 63(2021):145–160

    Google Scholar 

  37. Abioye TE, Olugbade TO, Ogedengbe TI (2017) Welding of dissimilar metals using gas metal arc and laser welding techniques: a review. J Emerg Trends Eng Appl Sci 8(6):225–228

    Google Scholar 

  38. Zhoua J, Retrainta D, Suna Z, Kanoutéa P (2018) Comparative study of the effects of surface mechanical attrition treatment and conventional shot peening on low cycle fatigue of a 316L stainless steel. Surf Coat Technol 349:556–566

    Article  Google Scholar 

  39. Hanlon T, Kwon YN, Suresh S (2003) Grain size effects on the fatigue response of nanocrystalline metals. Scr Mater 49:675–680

    Article  Google Scholar 

  40. Yang L, Tao NR, Lu K, Lu L (2013) Enhanced fatigue resistance of Cu with a gradient nanograined surface layer. Scr Mater 68:801–804

    Article  Google Scholar 

  41. Li Y, Zhou L, He W, He G, Wang X, Nie X et al (2013) The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperatures. Sci Technol Adv Mater 14:055010

    Article  Google Scholar 

  42. Yasuoka M, Wang P, Zhang K, Qiu Z, Kusaka K, Pyoun Y et al (2013) Improvement of the fatigue strength of SUS304 austenite stainless steel using ultrasonic nanocrystal surface modification. Surf Coat Technol 218:93–98

    Article  Google Scholar 

  43. Uusitalo J, Karjalainen LP, Retraint D, Palosaari M (2009) Fatigue properties of steels with ultrasonic attrition treated surface layers. Mater Sci Forum 604–605:239–248

    Google Scholar 

  44. Xingchen Y, Shuo Y, Chaoyue C, Richard J, Rocco L, Rodolphe B, Wenyou M, Min K, Hanlin L, Jian L, Min L (2019) Fatigue strength improvement of selective laser melted Ti6Al4V using ultrasonic surface mechanical attrition. Mater Res Lett 7(8):327–333

    Article  Google Scholar 

  45. Wei YJ, Anand L (2004) Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals. J Mech Phys Solids 52:2587–2616

    Article  MATH  Google Scholar 

  46. Wei YJ, Bower AF, Gao HJ (2008) Enhanced strain-rate sensitivity in fcc nanocrystals due to grain-boundary diffusion and sliding. Acta Mater 56:1741–1752

    Article  Google Scholar 

  47. Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556

    Article  Google Scholar 

  48. Tian JW, Villegas JC, Yuan W, Fielden D, Shaw L, Liaw PK, Klarstrom DL (2007) A study of the effect of nanostructured surface layers on the fatigue behaviors of a C-2000 superalloy. Mater Sci Eng A 468–470:164–170

    Article  Google Scholar 

  49. Dai K, Shaw L (2008) Analysis of fatigue resistance improvements via surface severe plastic deformation. Int J Fatigue 30:1398–1408

    Article  Google Scholar 

  50. Kumar SA, Raman SS, Sankara Narayanan TSN (2012) Effect of surface mechanical attrition treatment on fatigue lives of alloy 718. Trans Indian Inst Metals 65:473–477

    Article  Google Scholar 

  51. Olugbade T, Lu J (2018) Effects of materials modification on the mechanical and corrosion properties of AISI 316 stainless steel. In: Twelfth international conference on fatigue damage of structural materials, Cape Cod, Hyannis, USA

  52. Olugbade T, Lu J (2020) Improving the passivity and corrosion behaviour of mechanically surface-treated 301 stainless steel. In: International conference on nanostructured materials (NANO 2020), vol 117, Australia

  53. Blonde R, Chan HM, Bonasso NA, Bolle B, Grosdidier T, Lu J (2010) Evolution of texture and microstructure in pulsed electrodeposited Cu treated by surface mechanical attrition treatment. J Alloys Compd 504:S410–S413

    Article  Google Scholar 

  54. Zhang XC, Lu J, Shi SQ (2011) A computational study of plastic deformation in AISI 304 induced by surface mechanical attrition treatment. Mech Adv Mater Struct 18:572–577

    Article  Google Scholar 

  55. Murakami Y, Nomoto T, Ueda T (2001) Factors influencing the mechanism of superlong fatigue failure in steels. Fatigue Fract Engng Mater Struct 22:581–590

    Article  Google Scholar 

  56. Huang HW, Wang ZB, Lu J, Lu K (2015) Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer. Acta Mater 87:150–160

    Article  Google Scholar 

  57. Ueno H, Kakihata K, Kaneko Y, Hashimoto S, Vinogradov A (2011) Enhanced fatigue properties of nanostructured austenitic SUS 316L stainless steel. Acta Mater 59:7060

    Article  Google Scholar 

  58. Huang JY, Yeh JJ, Jeng SL, Chen CY, Kuo RC (2006) High-cycle fatigue behavior of type 316L stainless steel. Mater Trans 47:409

    Article  Google Scholar 

  59. Strizak JP, Tian H, Liaw PK, Mansur LK (2005) Fatigue properties of type 316LN stainless steel in air and mercury. J Nucl Mater 343:134

    Article  Google Scholar 

  60. Tian H, Liaw PK, Fielden DE, Brooks CR, Brotherton MD, Jiang L, Yang B, Wang H, Strizak JP, Mansur LK (2006) Effects of frequency on fatigue behavior of type 316 low-carbon, nitrogen-added stainless steel in air and mercury for the spallation neutron source. Metall Mater Trans A 37(1):163–173

    Article  Google Scholar 

  61. Ayyub P et al (2001) Synthesis of nanocrystalline material by sputtering and laser ablation at low temperatures. Appl Phys A 73:67–73

    Article  Google Scholar 

  62. Wang YM, Jankowski AF, Hamza AV (2007) Strength and thermal stability of nanocrystalline gold alloys. Scr Mater 57:301–304

    Article  Google Scholar 

  63. Jankowski AF et al (2006) Nanocrystalline growth and grainsize effects in Au–Cu electrodeposits. Thin Solid Films 494:268–273

    Article  Google Scholar 

  64. Agnew SR et al (2000) Microstructure and mechanical behavior of nanocrystalline metals. Mater Sci Eng A A285:391–396

    Article  Google Scholar 

  65. Fan GJ et al (2007) Mechanical behavior of a bulk nanocrystalline Ni–Fe alloy. J Alloy Compd 434(435):298–300

    Article  Google Scholar 

  66. Khan AS et al (2006) Nanocrystalline aluminum and iron: mechanical behavior at quasi-static and high strain rates, and constitutive modeling. Int J Plast 22:195–209

    Article  MATH  Google Scholar 

  67. Ajdelsztajn L et al (2005) Cold spray deposition of nanocrystalline aluminum alloys. Metall Mater Trans A 36A:657–666

    Article  Google Scholar 

  68. Xiao C et al (2001) Tensile behavior and fracture in nickel and carbon doped nanocrystalline nickel. Mater Sci Eng A A301:35–43

    Article  Google Scholar 

  69. Chokshi AH et al (1989) On the validity of the Hall-Petch relationship in nanocrystalline metals. Scri Metall 23:1679–1683

    Article  Google Scholar 

  70. Wang YM et al (2003) Microsample tensile testing of nanocrystalline copper. Scri Mater 48:1581–1586

    Article  Google Scholar 

  71. Yang Y et al (2008) Fatigue and fracture of a bulk nanocrystalline NiFe alloy. Metall Mater Trans A 39A:1145–1156

    Article  Google Scholar 

  72. Nikitin I (2005) Mechanical and thermal stability of mechanically induced near-surface nanostructures. Mater Sci Eng Abstr (Structural Materials: Properties, Microstructure and Processing) 403:318–327

    Article  Google Scholar 

  73. Han SZ et al (2007) Fatigue behavior of nano-grained copper prepared by ECAP. J Alloy Compd 434–435:304–306

    Article  Google Scholar 

  74. Burkle G et al (2002) Determination of the mechanical properties of nanocrystalline Fe-Cr-based thermal spray coatings. Mater Sci Forum 386(388):571–576

    Article  Google Scholar 

  75. Cavaliere P (2007) Low cycle fatigue of electrodeposited pure nanocrystalline metals. Mater Sci Forum 2:302

    Google Scholar 

  76. Moser B et al (2006) Cyclic strain hardening of nanocrystalline nickel. Scr Mater 54:1151–1155

    Article  Google Scholar 

  77. Mano H et al (2005) Characterization of nanocrystalline surface layer induced by shot peening and effect on their fatigue strength. In: Materials research society symposium proceedings, November 30–December 2, 2004, Boston, MA, vol 843, pp 67–72

  78. Pao PS, Jones HN, Feng CR (2004) Fatigue crack growth and fracture toughness in bimodal Al 5083. In: Materials research society symposium proceedings, December 1–5, 2003, Boston, MA, vol 791, pp 17–22

  79. Olugbade TO (2020) Stress corrosion cracking and precipitation strengthening mechanism in TWIP steels: progress and prospects. Corros Rev 38:473–488

    Article  Google Scholar 

  80. Sriraman KR, Raman SGS, Seshadri SK (2007) Influence of crystallite size on the hardness and fatigue life of steel samples coated with electrodeposited nanocrystalline Ni–W alloys. Mater Lett 61:715–718

    Article  Google Scholar 

  81. Witney AB et al (1995) Fatigue of nanocrystalline copper. Scr Metall Et Mater 33:2025–2030

    Article  Google Scholar 

  82. Xie JJ, Wu XL, Hong YS (2008) Study on fatigue crack nucleation of electro deposited nanocrystalline nickel. Adv Mater Res 33–37:925–930

    Article  Google Scholar 

  83. Abraham M et al (2001) Microstructure and thermal stability of electrodeposited nanocrystalline nickel. In: International symposium on metastable, mechanically alloyed and nanocrystalline materials, Jun 24–29, 2001, Ann Arbor, MI, pp 397–402

  84. Arnould O, Hubert O, Hild F (2004) Thermomechanical properties and fatigue of nanocrystalline Ni/Cu electrodeposits. Nanoscale Materials and Modeling—Relations Among Processing, Microstructure and Mechanical Properties, April 13–16, 2004, San Francisco, CA, pp 357–362

  85. Cheng S et al (2007) Fracture of Ni with grain-size from nanocrystalline to ultrafine scale under cyclic loading. Scr Mater 57:217–220

    Article  Google Scholar 

  86. Olugbade TO, Abioye TE, Farayibi PK, Olaiya NG, Omiyale BO, Ogedengbe TI (2020) Electrochemical properties of MgZnCa-based thin film metallic glasses fabricated via magnetron sputtering deposition coated on a stainless steel substrate. Anal Lett 54(10):1588–1602

    Article  Google Scholar 

  87. Hattar K et al (2008) Defect structures created during abnormal grain growth in pulsed-laser deposited nickel. Acta Mater 56:794–801

    Article  Google Scholar 

  88. Hugo RC et al (2003) In-situ TEM tensile testing of DC magnetron sputtered and pulsed laser deposited Ni thin films. Acta Mater 51:1937–1943

    Article  Google Scholar 

  89. Jianhong H, Schoenung JM (2003) Nanocrystalline Ni coatings strengthened with ultrafine particles. Metall Mater Trans A 34A:673–683

    Google Scholar 

  90. Mohammed T, Olugbade TO, Nwankwo I (2016) Determination of the effect of oil exploration on galvanized steel in Niger Delta, Nigeria. J Sci Res Rep 10(2016):1–9

    Google Scholar 

  91. Knapp JA, Follstaedt DM (2004) Hall-Petch relationship in pulsed-laser deposited nickel films. J Mater Res 19:218–227

    Article  Google Scholar 

  92. Kumar KS et al (2003) Deformation of electrodeposited nanocrystalline nickel. Acta Mater 51:387–405

    Article  Google Scholar 

  93. Larsen KP et al (2003) MEMS device for bending test: measurements of fatigue and creep of electroplated nickel. Sens Actuators A 103:156–164

    Article  Google Scholar 

  94. Li HQ, Ebrahimi F (2003) An investigation of thermal stability and microhardness of electrodeposited nanocrystalline nickel-21% iron alloys. Acta Mater 51:3905–3913

    Article  Google Scholar 

  95. Wu X et al (2006) Twinning and stacking fault formation during tensile deformation of nanocrystalline Ni. Scr Mater 54:1685–1690

    Article  Google Scholar 

  96. Xie J, Wu X, Hong Y (2007) Shear bands at the fatigue crack tip of nanocrystalline nickel. Scr Mater 57:5–8

    Article  Google Scholar 

  97. Yang Y et al (2007) Mechanisms of fatigue in LIGA Ni MEMS thin films. Mater Sci Eng A 444:39–50

    Article  Google Scholar 

  98. Watts OP (1916) Rapid nickel plating [with discussion]. Trans Am Electrochem Soc 29:395–403

    Google Scholar 

  99. Cui BZ et al (2007) Highly textured and twinned Cu films fabricated by pulsed electrodeposition. Acta Mater 55:4429–4438

    Article  Google Scholar 

  100. Mughrabi H, Hoppel HW, Kautz M (2004) Fatigue and microstructure of ultrafine-grained metals produced by severe plastic deformation. Scr Mater 51:807–812

    Article  Google Scholar 

  101. Hoppel HW et al (2006) An overview: fatigue behaviour of ultrafine-grained metals and alloys. Int J Fatigue 28:1001–1010

    Article  Google Scholar 

  102. Canadinc D et al (2008) On the cyclic stability of nanocrystalline copper obtained by powder consolidation at room temperature. Scr Mater 58:307–310

    Article  Google Scholar 

  103. Horita Z, Langdon TG (2005) Microstructures and microhardness of an aluminum alloy and pure copper after processing by high pressure torsion. Mater Sci Eng A 410–411:422–425

    Article  Google Scholar 

  104. Ivanisenko Y, Valiev RZ, Fecht HJ (2005) Grain boundary statistics in nano-structured iron produced by high pressure torsion. Mater Sci Eng A 390:159–165

    Article  Google Scholar 

  105. Pérez-Prado MT et al (2008) Bulk nanocrystalline [omega]-Zr by high-pressure torsion. Scr Mater 58:219–222

    Article  Google Scholar 

  106. Yang Z, Welzel U (2005) Microstructure-microhardness relation of nanostructured Ni produced by high-pressure torsion. Mater Lett 59:3406–3409

    Article  Google Scholar 

  107. Lee Z et al (2004) Microstructure and microhardness of cryomilled bulk nanocrystalline Al-7.5%Mg alloy consolidated by high pressure torsion. Scr Mater 51:209–214

    Article  Google Scholar 

  108. Stolyarov VV et al (2000) Processing nanocrystalline Ti and its nanocomposites from micrometer-sized Ti powder using high pressure torsion. Mater Sci Eng A 282:78–85

    Article  Google Scholar 

  109. Valiev RZ et al (1996) Processing of nanostructured nickel by severe plastic deformation consolidation of ball-milled powder. Scr Mater 34:1443–1448

    Article  Google Scholar 

  110. Liao XZ et al (2006) High-pressure torsion-induced grain growth in electrodeposited nanocrystalline Ni. Appl Phys Lett 88:021909

    Article  Google Scholar 

  111. Mano H, Kondo S, Matsumuro A (2006) Microstructured surface layer induced by shot peening and its effect on fatigue strength. J Jpn Inst Metals 70:415–419

    Article  Google Scholar 

  112. Martin U et al (1998) Cyclic deformation and near surface microstructures of normalized shot peened steel SAE 1045. Mater Sci Eng A 246:69–80

    Article  Google Scholar 

  113. Bonelli M et al (2003) Pulsed laser deposition of diamond like carbon films on polycarbonate. J Appl Phys 93:859–865

    Article  Google Scholar 

  114. Palkar VR, Prashanthi K, Dattagupta SP (2008) Influence of process-induced stress on multiferroic properties of pulse laser deposited Bi0.7Dy0.3FeO3 thin films. J Phys D 41:45

    Article  Google Scholar 

  115. Luzin V, Valarezo A, Sampath S (2007) Through-thickness residual stress measurement in metal and ceramic spray coatings by neutron diffraction. In: MECASENS 4th international conference on stress evaluation using neutrons and synchrotron radiation, Sep 24–26, Vienna, AUSTRIA, pp 315–320

  116. Choi WB et al (2007) Integrated characterization of cold sprayed aluminum coatings. Acta Mater 55:857–866

    Article  Google Scholar 

  117. Jiang HG et al (2000) Microstructural evolution, microhardness and thermal stability of HPT-processed Cu. Mater Sci Eng A 290:128–138

    Article  Google Scholar 

  118. Shaik G, Milligan W (1997) Consolidation of nanostructured metal powders by rapid forging: processing, modeling, and subsequent mechanical behavior. Metall Mater Trans A 28:895–904

    Article  Google Scholar 

  119. Zhang YS et al (2006) Friction and wear behaviors of nanocrystalline surface layer of pure copper. Wear 260:942–948

    Article  Google Scholar 

  120. El-Sherik AM, Shirokoff J, Erb U (2005) Stress measurements in nanocrystalline Ni electrodeposits. J Alloy Compd 389:140–143

    Article  Google Scholar 

  121. Li S-X, Akid R (2013) Corrosion fatigue life prediction of a steel shaft material in seawater. Eng Fail Anal 34:324–334

    Article  Google Scholar 

  122. Ebara R, Yamaguchi Y, Kanei D, Ota T, Miyoshi Y (2011) Ultrasonic corrosion fatigue behavior of austenitic stainless steels. In: Proceedings of the 5th international conference on VHCF, Berlin, Germany, pp 275–280

  123. Ebara R, Yamaguchi Y, Kanei D, Yamamoto Y (2012) Ultrasonic corrosion fatigue behavior of high strength austenitic stainless steels. In: Proceedings of a symposium sponsored by mechanical behavior of committee of TMS and ASM international, Pittsburgh, U.S.A, pp 233–242

  124. Ebara R 2015 Giga-cycle corrosion fatigue strength of austenitic stainless steels, Anales de Mecánica de la Fractura vol 32, pp 37-42

  125. Ebara R, Miyoshi Y (2014) Ultrasonic corrosion fatigue behavior of duplex stainless steel. Key Eng Mater 577–578:421–424

    Google Scholar 

  126. Ebara R, Kai T, Inoue K (1978) Corrosion fatigue behavior of 13Cr stainless steel in sodium-chloride aqueous solution and steam environment, ASTM STP642. In: Craig Jr HL, Crooker TW, Hoeppner DW (eds) ASTM, pp 155–168

  127. Ebara R, Furukawa H, Goto A (1981) Corrosion fatigue behavior of duplex stainless steel. In: Proc. of the Annual Meeting of the Japanese Soc. for Strength and Fracture of Materials pp 54–57

  128. Ebara R (2016) The influence of metallurgical factors on corrosion fatigue strength of stainless steels. In: 21st European conference on fracture, ECF21, 20–24 June 2016, Catania, Italy, Procedia Structural Integrity Procedia, vol 2, pp 517–524

  129. Perkins KM, Bache MR (2005) Corrosion fatigue of a 12%Cr low pressure turbine blade steel in simulated service environments. Int J Fatigue 27(10–12):1499–1508

    Article  Google Scholar 

  130. Shipilov SA (2002) Mechanisms for corrosion fatigue crack propagation. Fatigue Fract Eng Mater Struct 25:243–259

    Article  Google Scholar 

  131. Jakubowski M (1998) Fatigue crack propagation in austenitic stainless steel under low frequency loading and salt water conditions. Fatigue Fract Eng Mater Struct 21:937–946

    Article  Google Scholar 

  132. Ebara R, Kai T, Mihara M, Kino H, Katayama K, Shiota K (1983) Corrosion fatigue behaviour of 13Cr stainless steel for turbine moving blades. In: Jafee RI (ed) Corrosion fatigue of steam turbine blade materials, vol 4. Pergamon Press, New York, pp 150–167

    Google Scholar 

  133. Austen IM, McIntyre P (1979) Corrosion fatigue of high strength steel in low pressure hydrogen gas. Met Sci 13:420–428

    Article  Google Scholar 

  134. Ebara R, Kai T, Inoue K, Masumoto I (1978) Fractographic analysis of corrosion fatigue cracking of 13Cr stainless steel in NaCl aqueous solution. J Soc Mat Sci 27:64–68

    Article  Google Scholar 

  135. Ebara R (2006) Corrosion fatigue phenomena learned from failure analysis. Eng Fail Anal 13:516–525

    Article  Google Scholar 

  136. Ebara R, Yamada T, Kawano H (1990) Corrosion fatigue process of 12 Cr stainless steel. ISIJ Int 30:535–539

    Article  Google Scholar 

  137. Ebara R, Furukawa H, Goto A (1981) Corrosion fatigue behaviour of duplex stainless steels. In: Proc. of the annual meeting, JSFSS, pp 54–7

  138. Ebara R, Matsumoto K, Matsuda Y, Mizuno Y, Nishimura I (2010) Fatigue of materials, advances and emergences in understanding. In: Srivastsan TS, AshrafTmam M (eds) TMS. Wiley, pp 381–392

  139. Ebara R (2006) The present situation and future problems in ultrasonic fatigue testing–mainly reviewed on environmental effects and materials’ screening. Int J Fatigue 28:1465–1470

    Article  MATH  Google Scholar 

  140. Endo K, Miyao Y (1958) Effects of cycle frequency on the corrosion fatigue strength. Bull Jpn Soc Mech Eng 1:374–380

    Article  Google Scholar 

  141. Scamans GM, Birbilis R, Buchheit RG (2010) Corrosion of aluminum and its alloys. Shreir’s Corros 3:1974–2010

    Article  Google Scholar 

  142. Yu-Ting T, Po-Chiang L, Yu-Wen C, Shing-Hoa W, Jer-Ren Y (2018) Fatigue behavior and microstructural characteristics of a duplex stainless steel weld metal under vibration-assisted welding. Mater Sci Eng A 721:319–327

    Article  Google Scholar 

  143. Donahue JR, Burns JT (2016) Effect of chloride concentration on the corrosion–fatigue crack behavior of an age-hardenable martensitic stainless steel. Int J Fatigue 91:79–99

    Article  Google Scholar 

  144. Szklarz KE (2000) Aggressive CO2 corrosion and fatigue behaviour of pipeline girth welds, Paper No. 00012, Proc. Corrosion 2000, NACE International, Houston, TZ

  145. Eadie RL et al (2000) Corrosion fatigue and near-neutral pH stress corrosion cracking of pipeline steel in very dilute carbonate/bicarbonate with and without the presence of hydrogen sulphide using the compliance technique, Paper No. 03527, Proc. Corrosion 2003, NACE International, Houston, TZ.

  146. Masayuki A, Yoshihiko U, Toshifumi K, Masaki N, Toshihiro T, Yu B, Kenta I (2015) Effect of sensitization on corrosion fatigue behavior of type 304 stainless steel annealed in nitrogen gas. Mater Sci Eng A 640:33–41

    Article  Google Scholar 

  147. Lou X, Othon MA, Rebak RB (2017) Corrosion fatigue crack growth of laser additively-manufactued 316L stainless steel in high temperature water. Corros Sci 127:120–130

    Article  Google Scholar 

  148. Akid R (1997) The role of stress-assisted localised corrosion in the development of short fatigue cracks. In: Van Der Sluys WA, Piascik RS, Zawierucha R (eds) Effects of the environment on the initiation of crack growth, ASTM STP 1298. American Society of Testing and Materials, West Conshohocken, pp 3–17

    Chapter  Google Scholar 

  149. Frankel GS (1998) Pitting corrosion of metals: a review of the critical factors. J Electrochem Soc 145(6):2186–2198

    Article  Google Scholar 

  150. Ritchie RO, Lankford J (1986) Small fatigue cracks: cracks: a statement of the problem and potential solutions. Mater Sci Eng 84:11–16

    Article  Google Scholar 

  151. Lukaszewicz M, Zhou S, Turnbull A (2015) Novel concepts on the growth of corrosion fatigue small and short cracks. Mater Corros 66(12):1488–1490

    Article  Google Scholar 

  152. Zhou S, Lukaszewicz M, Turnbull A (2015) Small and short crack growth and the solution-conductivity dependent electrochemical crack size effect. Corros Sci 97:25–37

    Article  Google Scholar 

  153. Ganglof RP (1981) Criticality of crack size in aqueous corrosion fatigue. Res Mech Lett 1(7):299–306

    Google Scholar 

  154. Uhlig HH (1950) Adsorbed and reaction-product films on metals. J Electrochem Soc 97(11):215C

    Article  Google Scholar 

  155. YaM K (1961) Effects of anions on the dissolution kinetics of metals. J Electrochem Soc 108(3):209–216

    Article  Google Scholar 

  156. Leckie HP, Uhlig HH (1966) Environmental factors affecting the critical potential for pitting in 18–8 stainless steel. J Electrochem Soc 113(12):1262–1267

    Article  Google Scholar 

  157. Hoar TP, Jacob WR (1967) Breakdown of passivity of stainless steel by halide ions. Nature 216(5122):1299–1301

    Article  Google Scholar 

  158. Hoar TP (1967) The production and breakdown of the passivity of metals. Corr Sci 7(6):341–355

    Article  Google Scholar 

  159. Boehni H, Uhlig HH (1969) Environmental factors affecting the critical pitting potential of aluminium. Electrochem Soc J 116(7):906–910

    Article  Google Scholar 

  160. Szklarska-Smialowska Z (1986) Pitting corrosion of metals. Houston (TX): NACE

  161. Vlčková I, Jonšta P, Jonšta Z, Váňová P, Kulová T (2016) Corrosion fatigue of austenitic stainless steels for nuclear power engineering. Metals 6:319

    Article  Google Scholar 

  162. Boukerrou A, Cottis RA (1993) Crack initiation in the corrosion fatigue of structural steels in salt solutions. Corr Sci 3–5(14):577–585

    Article  Google Scholar 

  163. Wang Y, Akid R (1996) Role of nonmetallic inclusions in fatigue, pitting, and corrosion fatigue. Corrosion (Houston) 52(2):92–102

    Article  Google Scholar 

  164. Hoeppner DW (1972) Corrosion fatigue considerations in materials selections and engineering design. Corrosion Fatigue: Chemistry, Mechanics, and Microstructure, NACE pp 3–11

  165. McAdam DJ, Gell GW (1928) Pitting and its effect on the fatigue limit of steels corroded under various conditions. J Proc Am Soc Test Mater 41:696–732

    Google Scholar 

  166. Magnin T, Coudreuse L (1985) The effects of strain rate on the corrosion fatigue behaviour of b.c.c. fe26cr1mostainless steels. Mater Sci Eng 72(2):125–134

    Article  Google Scholar 

  167. Wu XD (1995) Short fatigue crack behaviour of a submarine hull steel in inert and aggressive environments. University of Sheffield, PhD Dissertation

  168. Linder J, Blom R (2001) Development of a method for corrosion fatigue life prediction of structurally loaded bearing steels. Corrosion 57(5):404–412

    Article  Google Scholar 

  169. Stashchuk MH (2000) Analysis of the influence of elastic deformation on the electrode potential of a metal cylinder in a medium. Mater Sci 36(1):54–59

    Article  Google Scholar 

  170. Turnbull A (2003) 6.04—Environment-assisted fatigue in liquid environments. In: Milne I, Ritchie RO, Karihaloo B (eds) Comprehensive structural integrity. Pergamon, Oxford, pp 163–210

    Chapter  Google Scholar 

  171. Magnin T, Lardon JM (1985) The influence of a 3.5% Nacl solution on the fatigue damage evolution in a planar slip f.c.c. stainless steel. Mater Sci Eng 76:L7–L10

    Article  Google Scholar 

  172. Sahal M, Creus J, Sabot R et al (2006) The effects of dislocation patterns on the dissolution process of polycrystalline nickel. Acta Mater 54(8):2157–2167

    Article  Google Scholar 

  173. Sahal M, Creus J, Sabot R et al (2004) Consequences of plastic strain on the dissolution process of polycrystalline nickel in H2SO4 solution. Scr Mater 51(9):869–873

    Article  Google Scholar 

  174. Liang J, Suo Z (2001) Stress-assisted reaction at a solid-fluid interface. Interface Sci 9(1–2):93–104

    Article  Google Scholar 

  175. Hu H (1997) Fatigue and corrosion fatigue crack growth resistance of RQT501. University of Sheffield, PhD Dissertation

  176. Akid R, Miller KJ (1991) Short fatigue crack growth behaviour of a low carbon steel under corrosion fatigue conditions. Fatigue Fract Eng Mater Struct 14(6):637–649

    Article  Google Scholar 

  177. Turnbull A, Wright L, Crocker L (2010) New insight into the pit-to-crack transition from finite element analysis of the stress and strain distribution around a corrosion pit. Corros Sci 52(4):1492–1498

    Article  Google Scholar 

  178. Thompson AW, Backofen WA (1971) The effect of grain size on fatigue. Acta Metall 19(7):597–606

    Article  Google Scholar 

  179. Pearson S (1975) Fatigue crack closure under cyclic tension. Eng Fract Mech 7:235–247

    Article  Google Scholar 

  180. Miller KJ (1993) The two thresholds of fatigue behaviour. Fatigue Fract Eng Mater Struct 16(9):931–939

    Article  Google Scholar 

  181. Suresh S, Ritchie RO (1984) Propagation of short fatigue cracks. Int Mater Rev 29(6):445–476

    Article  Google Scholar 

  182. Ritchie RO, Lankford J (1986) Small fatigue cracks. The Metallurgical Society of AIME, Warrendale (PA)

    Google Scholar 

  183. Tanaka K, Nakai Y, Kawashima R (1983) Fracture mechanics approach to fatigue crack initiation from deep notches. Eng Fract Mech 18(5):1011–1023

    Article  Google Scholar 

  184. Brown CW, King JE, Hicks MA (1984) Effects of microstructure on long and short cracks at a sharp notch. Met Sci 18:374–380

    Article  Google Scholar 

  185. Lankford J (1982) The growth of a small fatigue cracks in 7076–T6 aluminium. Eng Fract Mech 5:232–248

    Google Scholar 

  186. Taira S, Tanaka K, Nakai Y (1978) A model of crack-tip slip band blocked by grain boundary. Mech Res Commun 5:375–381

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Temitope Olumide Olugbade.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethical approval

Not applicable.

Additional information

Technical Editor: Monica Carvalho.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olugbade, T.O., Ojo, O.T., Omiyale, B.O. et al. A review on the corrosion fatigue strength of surface-modified stainless steels. J Braz. Soc. Mech. Sci. Eng. 43, 421 (2021). https://doi.org/10.1007/s40430-021-03148-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-03148-5

Keywords

Navigation