Skip to main content
Log in

DFT predictions of the electronic, phonon, optical, and thermoelectric characteristics of CaCu2S2

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Density functional theory (DFT)-based predictions were successfully executed for CaCu2S2. A direct band gap obtained with 1.06 eV is found to be almost in the range of best photovoltaics. The phonon dispersion curve with positive frequencies suggests the easy experimental synthesis of CaCu2S2. Obtained high-absorption, high-refractive index, and high-optical conductivity profiles of CaCu2S2 intend its usage in modern photovoltaics and denote the feasible uses of CaCu2S2 in particular for practical UV goals. Finally, temperature-dependent thermoelectric properties of CaCu2S2 yield also high Seebeck coefficients over 2000 μV/K promising an efficient novel thermoelectric material for practical applications in the optoelectronic industry.

Graphical abstract

Predicting the electronic, phonon, optical, and thermoelectric characteristics of CaCu2S2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. G. Giuffredi, T. Asset, Y. Liu, P. Atanassov, F. Di Fonzo, ACS Mater. Au 1, 6–36 (2021)

    Article  CAS  Google Scholar 

  2. P.D. Matthews, P.D. McNaughter, D.J. Lewis, P. O’Brien, Chem. Sci. 8, 4177–4187 (2017)

    Article  CAS  Google Scholar 

  3. Z. Ali, T. Zhang, M. Asif, L. Zhao, Y. Yu, Y. Hou, Mater. Today 35, 131–167 (2020)

    Article  CAS  Google Scholar 

  4. L. Wang, X. Zhang, C. Li, X.-Z. Sun, K. Wang, F.-Y. Su, F.-Y. Liu, Y.-W. Ma, Rare Met. 41, 2971–2984 (2022)

    Article  CAS  Google Scholar 

  5. P. Salarizadeh, M. Rastgoo-Deylami, M.B. Askari, K. Hooshyari, Nano Futures 6, 032005 (2022)

    Article  Google Scholar 

  6. S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, Nat. Rev. Mater. 2, 17033 (2017)

    Article  CAS  Google Scholar 

  7. M. Al-Shakban, P.D. Matthews, P. O’Brien, Chem. Commun. 53, 10058–10061 (2017)

    Article  CAS  Google Scholar 

  8. Y. Wang et al., Mater. Res. Express 8, 065902 (2021)

    Article  CAS  Google Scholar 

  9. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, Z. fur Krist.—Cryst. Mater. 220(5–6), 567–570 (2005)

    Article  CAS  Google Scholar 

  10. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens Matter. 14, 2717–2744 (2002)

    CAS  Google Scholar 

  11. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  CAS  Google Scholar 

  12. J.P. Perdew, K. Burke, M. Ernzerhof, Perdew, Burke, and Ernzerhof reply. Phys. Rev. Lett. 80, 891–891 (1998)

    Article  CAS  Google Scholar 

  13. E. Güler, M. Güler, Mat. Res. 17, 1268–1272 (2014)

    Article  Google Scholar 

  14. D.R. Hamann, M. Schlüter, C. Chiang, Phys. Rev. Lett. 43, 1494–1497 (1979)

    Article  CAS  Google Scholar 

  15. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188–5192 (1976)

    Article  Google Scholar 

  16. G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67–71 (2006)

    Article  CAS  Google Scholar 

  17. M.V. Dambhare, B. Butey, S.V. Moharil, J. Phys.: Conf. Ser. 1913, 012053 (2021)

    CAS  Google Scholar 

  18. W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510–519 (1961)

    Article  CAS  Google Scholar 

  19. S. Tongay, J. Zhou, C. Ataca, K. Lo, T.S. Matthews, J. Li, J.C. Grossman, J. Wu, Nano Lett. 12, 5576–5580 (2012)

    Article  CAS  Google Scholar 

  20. Ş Uğur, E. Güler, M. Güler, A. Özdemir, G. Uğur, Physica E Low Dimens. Syst. Nanostruct. 143, 115403 (2022)

    Article  Google Scholar 

  21. Ş Uğur, M. Güler, G. Uğur, E. Güler, J. Magn. Magn. Mater. 523, 167614 (2021)

    Article  Google Scholar 

  22. E. Güler, M. Güler, Ş Uğur, G. Uğur, Int. J. Quantum Chem. 121, e26606 (2021)

    Article  Google Scholar 

  23. E. Güler, M. Güler, Ş Uğur, G. Uğur, Phil. Mag. 102, 244–263 (2021)

    Article  Google Scholar 

  24. M. Güler, Ş Uğur, G. Uğur, E. Güler, Mol. Phys. 119, e1928314 (2021)

    Article  Google Scholar 

  25. G. Uğur, M. Güler, Ş Uğur, E. Güler, Theor. Chem. Acc. 142, 20 (2023)

    Article  Google Scholar 

  26. Kramers-Kronig Relations in Optical Materials Research, Springer-Verlag (2005). https://doi.org/10.1007/b138913

    Article  Google Scholar 

  27. A. Armin, D.M. Stoltzfus, J.E. Donaghey, A.J. Clulow, R.C.R. Nagiri, P.L. Burn, I.R. Gentle, P. Meredith, J. Mater. Chem. C5, 3736–3747 (2017)

    Google Scholar 

  28. C. Wang, Z. Zhang, S. Pejić, R. Li, M. Fukuto, L. Zhu, G. Sauvé, Macromolecules 51, 9368–9381 (2018)

    Article  CAS  Google Scholar 

  29. E. Güler, Ş Uğur, M. Güler, G. Uğur, Micro Nanostructures 178, 207568 (2023)

    Article  Google Scholar 

  30. I.O. Galuskina, E.V. Galuskin, K. Prusik, Y. Vapnik, R. Juroszek, L. Jeżak, M. Murashko, Mineral. Mag. 81, 1073–1085 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Güler.

Ethics declarations

Conflict of interest

All the authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güler, E., Güler, M., Özdemir, A. et al. DFT predictions of the electronic, phonon, optical, and thermoelectric characteristics of CaCu2S2. MRS Communications 13, 1320–1325 (2023). https://doi.org/10.1557/s43579-023-00463-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00463-x

Keywords

Navigation