Skip to main content
Log in

Electronic, Optical and Thermoelectric Properties of 2H-CuAlO2: A First Principles Study

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electronic and optical properties of 2H-CuAlO2, including energy bands, density of states (DOS), optical dielectric behaviour, refractive index, absorption coefficient and optical conductivity, have been investigated within the framework of a full-potential linearized augmented plane wave scheme using different potentials. The direct and indirect band gaps for CuAlO2, computed using the Becke–Johnson potential, are estimated at 3.53 eV and 2.48 eV, respectively, which are in better agreement with the experimentally reported band gaps than those previously computed. The origin of energy bands is elucidated in terms of DOS, while the behaviour of the imaginary part of the dielectric constant is explained in terms of electronic transitions from valence bands to conduction bands. The computed value of the refractive index is 2.25 (1.94) for light perpendicular (parallel) to the c axis, in concordance with the available values. The overall shape of the spectral distribution for absorption coefficient and optical conductivity is also in accord with the reported data. The investigated thermoelectric properties indicate that CuAlO2 is a p-type semiconductor showing high effectiveness at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, Nature 389, 939 (1997).

    Article  Google Scholar 

  2. H. Yanagi, S. Inoue, K. Ueda, H. Kawazoe, H. Hosono, and N. Hamada, J. Appl. Phys. 88, 4159 (2000).

    Article  Google Scholar 

  3. A.N. Banerjee, R. Maity, and K.K. Chattopadhyay, Mater. Lett. 58, 10 (2004).

    Article  Google Scholar 

  4. Z. Deng, X. Zhu, R. Tao, W. Dong, and X. Fang, Mater. Lett. 61, 686 (2007).

    Article  Google Scholar 

  5. J.R. Smith, H. Thomas, V. Steenkiste, and X.G. Wang, Phys. Rev. B 79, 041403-1-4 (2009).

    Google Scholar 

  6. R. Hoffman and J. Wager, U.S. Patent No. (11 April 2006) 7,026,713 B2.

  7. H. Yanagi, K. Ueda, H. Ohta, M. Orita, M. Hirano, and H. Hosono, Solid State Commun. 121, 15 (2001).

    Article  Google Scholar 

  8. K. Tonooka, H. Bando, and Y. Aiura, Thin Solid Films 445, 327 (2003).

    Article  Google Scholar 

  9. K.L. Chopra, S. Major, and D.K. Pandya, Thin Solid Films 102, 1 (1983).

    Article  Google Scholar 

  10. J. Cai and H. Gong, J. Appl. Phys. 98, 033707-1-5 (2005).

    Google Scholar 

  11. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science 300, 1269 (2003).

    Article  Google Scholar 

  12. J. Pellicer-Porres, A. Segura, A.S. Gilliland, A. Muñoz, P. Rodriguez-Hernández, D. Kim, M.S. Lee, and T.Y. Kim, Appl. Phys. Lett. 88, 181904 (2006).

    Article  Google Scholar 

  13. M. Emziane, K. Durose, D.P. Halliday, A. Bosio, and N. Romeo, Appl. Phys. Lett. 87, 251913 (2005).

    Article  Google Scholar 

  14. Y. Yang, L. Wang, H. Yan, S. Jin, T.J. Marks, and S. Li, Appl. Phys. Lett. 89, 05116 (2006).

    Google Scholar 

  15. B. Drevillon, S. Kumar, P.R. Cabarrocas, and J.M. Siefert, Appl. Phys. Lett. 54, 2088 (1989).

    Article  Google Scholar 

  16. G. Dong, M. Zhang, W. Lan, P. Dong, and H. Yan, Vacuum 82, 1321 (2008).

    Article  Google Scholar 

  17. K. Koumoto, H. Koduka, and W.-S. Seo, J. Mater. Chem. 11, 251 (2001).

    Article  Google Scholar 

  18. H. Yagi, W.-S. Seo, and K. Koumoto, Key Eng. Mat. 63, 181 (2000).

    Google Scholar 

  19. S.A. Khan and A.H. Reshak, Comput. Mat. Sci. 95, 328 (2014).

    Article  Google Scholar 

  20. M.N. Huda, Y. Yan, A. Walsh, S.-H. Wei, and M.M. Al-Jassim, Phys. Rev. B 80, 035205-1-7 (2009).

    Google Scholar 

  21. V. Jayalakshmi, R. Murugan, and B. Palanivel, J. Alloys Compd. 388, 19 (2005).

    Article  Google Scholar 

  22. R. Gillen and J. Robertson, Phys. Rev. B 84, 035125 (2011).

    Article  Google Scholar 

  23. J. Pellicer-Porres, A. Segura, and D. Kim, Semicond. Sci. Technol. 24, 015002 (2009).

    Article  Google Scholar 

  24. M. Kumar, H. Zhao, and C. Persson, Semicond. Sci. Technol. 28, 065003 (2013).

    Article  Google Scholar 

  25. J. Robertson, R. Gillen, and S.J. Clark, Thin Solid Films 520, 3714 (2012).

    Article  Google Scholar 

  26. A. Buljan, P. Alemany, and E. Ruiz, J. Phys. Chem. B 103, 8060 (1999).

    Article  Google Scholar 

  27. T. Koyanagi, H. Harima, A. Yanase, and H. Katayama-Yoshida, J. Phys. Chem. Solid. 64, 1443 (2003).

    Article  Google Scholar 

  28. L.J. Shi, Z.J. Fang, and J. Li, J. Appl. Phys. 104, 073527 (2008).

    Article  Google Scholar 

  29. P. Poopanya, Phys. Lett. A 379, 853 (2015).

    Article  Google Scholar 

  30. C.K. Ghosh, D. Sarkar, M.K. Mitra, and K.K. Chattopadhyay, J. Phys. 24, 235501 (2012).

    Google Scholar 

  31. D.O. Scanlon, A. Walsh, B.J. Morgan, and G.W. Watson, Phys. Rev. B 79, 035101 (2009).

    Article  Google Scholar 

  32. J. Robertson, P.W. Peacock, M.D. Towler, and R. Needs, Thin Solid Films 411, 96 (2002).

    Article  Google Scholar 

  33. P. Blaha, K. Schwarz, P. Sorantin, and S.B. Rickey, Comput. Phys. Commun. 59, 399 (1990).

    Article  Google Scholar 

  34. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k_14.2, ISBN 3-9501031-1-2 (2014).

  35. K.M. Wong, S.M. Alay-e-Abbas, A. Shaukat, Y. Fang, and Y. Lei, J. Appl. Phys. 113, 014304 (2013).

    Article  Google Scholar 

  36. K.M. Wong, S.M. Alay-e-Abbas, Y. Fang, A. Shaukat, and Y. Lei, J. Appl. Phys. 114, 034901 (2013).

    Article  Google Scholar 

  37. W. Kohn and L.J. Sham, Phys. Rev. B 140A, 1133 (1965).

    Article  Google Scholar 

  38. A.D. Becke and E.R. Johnson, J. Chem. Phys. 124, 221101 (2006).

    Article  Google Scholar 

  39. G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    Article  Google Scholar 

  40. H.C. Kandpal and R. Seshadri, Solid State Sci. 4, 1045 (2002).

    Article  Google Scholar 

  41. C. Ambrosch-Draxl and J.O. Sofo, Comput. Phys. Commun. 175, 1 (2006).

    Article  Google Scholar 

  42. D.R. Penn, Phys. Rev. B 128, 2093 (1962).

    Article  Google Scholar 

  43. X. Nie, S.H. Wei, and S.B. Zhang, Phys. Rev. Lett. 88, 066405 (2002).

    Article  Google Scholar 

  44. T. Suriwong, T. Thongtem, and S. Thongtem, Curr. Appl. Phys. 14, 1257 (2014).

    Article  Google Scholar 

  45. J. Tate, H.L. Ju, J.C. Moon, A. Zakutayev, A.P. Richard, J. Russell, and D.H. McIntyre, Phys. Rev. B 80, 165206-1-8 (2009).

    Article  Google Scholar 

  46. Q.J. Liu, Z.T. Liu, and L.P. Feng, Phys. B 405, 2028 (2010).

    Article  Google Scholar 

  47. A.N. Banerjee and K.K. Chattopadhyay, J. Appl. Phys. 97, 084308 (2005).

    Article  Google Scholar 

  48. F.A. Benko and F.P. Koffyberg, J. Phys. Chem. Solids 45, 57 (1984).

    Article  Google Scholar 

  49. D.O. Scanlon, K.G. Godinho, B.J. Morgan, and G.W. Watson, J. Chem. Phys. 132, 024707 (2010).

    Article  Google Scholar 

  50. B.J. Ingram, T.O. Mason, R. Asahi, K.T. Park, and A.J. Freeman, Phys. Rev. B 64, 155114 (2001).

    Article  Google Scholar 

  51. R. Laskowski, N.E. Christensen, P. Blaha, and B. Palanivel, Phys. Rev. B 79, 165209 (2009).

    Article  Google Scholar 

  52. K.G. Godinho, B.J. Morgan, J.P. Allen, D.O. Scanlon, and G.W. Watson, J. Phys. 23, 334201 (2011).

    Google Scholar 

  53. F. Trani, J. Vidal, S. Botti, and M.A.L. Marques, Phys. Rev. B 82, 085115 (2010).

    Article  Google Scholar 

  54. S. Meziane, H. Feraoun, T. Ouahrani, and C. Esling, J. Alloys Compd. 581, 731 (2013).

    Article  Google Scholar 

  55. J.M. Clemens Lasance, Issue: November 2006. http://www. electronics-cooling.com/2006/11/the-seebeck-coefficient/. Accessed 1 Nov 2015

  56. D. Vashaee and A. Shakouri, J. Appl. Phys. 95, 1233 (2004).

    Article  Google Scholar 

Download references

Acknowledgement

We express our sincere gratitude to Prof. P. Blaha for providing the Wien2k computer code. Dr. K. C. Bhamu wishes to acknowledge UGC for providing him financial support (Dr. D. S. Kothari Postdoctoral Fellowship) wide letter No. PH/13-14/0113. The authors also acknowledge the help of Prof. W. K. Waleed from the College of Engineering, United Arab Emirates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Bhamu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhamu, K.C., Khenata, R., Khan, S.A. et al. Electronic, Optical and Thermoelectric Properties of 2H-CuAlO2: A First Principles Study. J. Electron. Mater. 45, 615–623 (2016). https://doi.org/10.1007/s11664-015-4160-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4160-3

Keywords

Navigation