Skip to main content
Log in

Theoretical investigation of the thermoelectric properties of ACuO2(A = K, Rb and Cs)

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The electronic, structural, mechanical, lattice dynamics and the electronic transport properties of ACuO2(A = K, Rb and Cs) are investigated using density functional theory. The calculated elastic constants and their related elastic moduli, phonon spectra and electronic transport properties of these compounds are reported here for the first time. The predicted structural parameters are in excellent agreement with the available experimental data. The obtained lattice thermal conductivities, κL, of ACuO2 (A = K, Rb and Cs) are found to display strong anisotropic features along the a, b and c directions. It is also found that the average room-temperature κL of CsCuO2 is lower than those of RbCuO2 and KCuO2, which is due to its smaller group velocities in the low frequency region i.e., 0 ~ 3 THz. Our calculations also show that the acoustic phonon modes contribute considerably to the total κL along the a and b directions. The electrical conductivity (σ) and electronic thermal conductivity (κel) of ACuO2 (A = K, Rb and Cs) show anisotropic features i.e., σ and κel along the c-axis is significantly larger than along the a and b-axes. Meanwhile, our obtained Seebeck coefficient (S) values are found to be 248, 110 and 91 μV/K for p-doped KCuO2, p-doped RbCuO2 and p-doped CsCuO2 respectively at 300 K along the b-direction. These S values are found to be of the same order of magnitude with that of well known thermoelectric (TE) material, Bi2Te3 (with S of 200 μV/K at 300 K) and the recently discovered metal oxide TE material, NaCo2O4 (with S of 100 μV/K at 300 K). However, our computed figure of merit (ZT) values of ACuO2 (A = K, Rb and Cs) are found to be very small as compared to known thermoelectric materials. For instance, our highest computed ZT value is 0.11 for p-type KCuO2 along the c-direction at 750 K, 0.15 for p-type RbCuO2 and 0.25 for p-type CsCuO2 along the a-direction at 800 K. These small ZT values are caused by large values of the lattice thermal conductivities.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.K. Rawat, B. Paul, P. Banerji, Nanotechnol. 24, 215401 (2013)

    ADS  Google Scholar 

  2. D.M. Rowe,Handbook of Thermoelectrics (CRC Press, New York, 1995)

  3. T.M. Tritt, M. Subramanian, Mater. Res. Bull. 31, 188 (2006)

    Google Scholar 

  4. W. Xie, A. Weidenkaff, X. Tang, Q. Zhang, J. Poon, T.M. Tritt, Nanomaterials 2, 379 (2012)

    Google Scholar 

  5. B. Poudel et al., Science 320, 634 (2008)

    ADS  Google Scholar 

  6. S. Walia, S. Balendhran, H. Nili, S. Zhuiykov, G. Rosengarten, Q.H. Wang, M. Bhaskaran, S.Sriram, M.S. Strano, K. Kalantar-zadeh, Prog. Math. Sci. 58, 1443 (2013)

    Google Scholar 

  7. I. Terasaki, Y. Sasago, K. Uchinokura, Phys. Rev. B 56, R12685 (1997)

    ADS  Google Scholar 

  8. S. Ohta, T. Nomura, H. Ohta, M. Hirano, H. Hosono, K. Koumoto, Appl. Phys. Lett. 87, 092108 (2005)

    ADS  Google Scholar 

  9. Y.K. Jeong, G.M. Choi, J. Phys. Chem. Solids 57, 81 (1996)

    ADS  Google Scholar 

  10. D. Hartung, F. Gather, P. Hering, C. Kandzia, D. Reppin, A. Polity, B.K. Meyer, P.J. Klar, Appl. Phys. Lett. 106, 253901 (2015)

    ADS  Google Scholar 

  11. A. Young, C. Schwartz, J. Phys. Chem. Solids 30, 249 (1969)

    ADS  Google Scholar 

  12. J. Figueira, J. Loureiro, J. Marques, C. Bianchi, P. Duarte, M. Ruoho, I. Tittonen, I. Ferreira, ACS Appl. Mater. Interfaces 9, 6520 (2017)

    Google Scholar 

  13. M.H. Zirin, D. Trivich, J. Chem. Phys. 39, 870 (1963)

    ADS  Google Scholar 

  14. X. Chen, D. Parker, M. Du, D.J. Singh, New J. Phys. 15, 043029 (2013)

    ADS  Google Scholar 

  15. J. Linnera, G. Sansone, L. Maschio, A.J. Karttunen, J. Phys. Chem. C 122, 15180 (2018)

    Google Scholar 

  16. F.P. Koffyberg, F.A. Benko, J. Appl. Phys. 53, 1173 (1982)

    ADS  Google Scholar 

  17. K. Wahl, W. Klemm, Z. Anorg. Allg. Chem. 270, 69 (1952)

    Google Scholar 

  18. K. Hestermann, R. Hoppe, Z. Anorg. Allg. Chem. 367, 249 (1969)

    Google Scholar 

  19. N.E. Brese, M. O’Keeffe, R.B. von Dreele, V.G. Young Jr., J. Solid State Chem. 83, 1 (1989)

    ADS  Google Scholar 

  20. G.A. Costa, E. Kaiser, Thermochim. Acta 269/270, 591 (1995)

    Google Scholar 

  21. K. Agris, L. Sven, J. Chem. Phys. 115, 466 (2001)

    Google Scholar 

  22. M. Shishkin, G. Kresse, Phys. Rev. B 74, 035101 (2006)

    ADS  Google Scholar 

  23. W. Kohn, L.J. Sham, Phys. Rev. A 140, 113 (1965)

    Google Scholar 

  24. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  25. J.P. Perdew, A. Ruzsinszky, I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008)

    ADS  Google Scholar 

  26. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    ADS  Google Scholar 

  27. P.E. Blochl, Phys. Rev. B 50, 17953 (1994)

    ADS  Google Scholar 

  28. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    ADS  MathSciNet  Google Scholar 

  29. Y.L. Page, P. Saxe, Phys. Rev. B 65, 104104 (2002)

    ADS  Google Scholar 

  30. A. Togo, I. Tanaka, Scr. Mater. 108, 1 (2015)

    Google Scholar 

  31. A. Togo, L. Chaput, I. Tanaka, Phys. Rev. B 91, 094306 (2015)

    ADS  Google Scholar 

  32. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    ADS  Google Scholar 

  33. J.M. Ziman,Principles of the theory of solids (Cambridge University Press, Cambridge, 1972)

  34. G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67 (2006)

    ADS  Google Scholar 

  35. J. Bardeen, W. Shockley, Phys. Rev. 80, 72 (1950)

    ADS  Google Scholar 

  36. L. Tang, M.Q. Long, D. Wang, Z.G. Shuai, Sci. China, Ser. B 52, 1646 (2009)

    Google Scholar 

  37. M.Q. Long, L. Tang, D. Wang, L.J. Wang, Z.G. Shuai, J. Am. Chem. Soc. 131, 17728 (2009)

    Google Scholar 

  38. M.Q. Long, L. Tang, D. Wang, Y.L. Li and Z.G. Shuai, ACS Nano 5, 2593 (2011)

    Google Scholar 

  39. M. Lundstrom,Fundamentals of Carrier Transport (Cambridge University Press, Cambridge, 2009)

  40. E. Mosconi, A. Amat, M. Nazeeruddin, M. Gratzel, F.D. Angelis, J. Phys. Chem. C 117, 13902 (2013)

    Google Scholar 

  41. T. Umebayashi, K. Asai, T. Kondo, A. Nakao, Phys. Rev. B 63, 155405 (2003)

    ADS  Google Scholar 

  42. O. Beckstein, J.E. Klepeis, G.L.W. Hart, O. Pankratov, Phys. Rev. B 63, 134112 (2001)

    ADS  Google Scholar 

  43. D.C. Wallace, inThermodynamics of Crystals (Wiley, New York, 1972), Chap. 1

  44. F. Birch, Phys. Rev. 71, 809 (1947)

    ADS  Google Scholar 

  45. R. Hill, Proc. Phys. Soc. A65, 349 (1952)

    ADS  Google Scholar 

  46. M.J. Mehl, B.M. Klein, D.A. Dimitri, A. Papaconstantopoulos, inIntermetallic compounds: Principles and practice, edited by J.H. Westbrook, R.L. Fleischer (John Wiley and Sons, London, 1955)

  47. S.F. Pugh, Philos. Mag. 45, 823 (1954)

    Google Scholar 

  48. A. Reuss, J. Appl. Math. Mech. 9, 49 (1929)

    Google Scholar 

  49. D. Music, A. Houben, R. Dronskowski, J.M. Schneider, Phys. Rev. B 75, 174102 (2007)

    ADS  Google Scholar 

  50. Z. Tian, J. Garg, K. Esfarjani, T. Shiga, J. Shiomi, G. Chen, Phys. Rev. B 85, 184303 (2012)

    ADS  Google Scholar 

  51. J. Yang, Y.L. Yan, Y.X. Wang, G. Yang, Rsc Adv. 4, 28714 (2014)

    Google Scholar 

  52. G. Shi, E. Kioupakis, J. Appl. Phys. 117, 065103 (2015)

    ADS  Google Scholar 

  53. T. Caillat, M. Carle, P. Pierrat, H. Scherrer, S. Scherrer, J. Phys. Chem. Solids 53, 1121 (1992)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirriam Chepkoech.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chepkoech, M., Joubert, D.P. & Amolo, G.O. Theoretical investigation of the thermoelectric properties of ACuO2(A = K, Rb and Cs). Eur. Phys. J. B 93, 100 (2020). https://doi.org/10.1140/epjb/e2020-100614-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-100614-2

Keywords

Navigation