Skip to main content
Log in

Bi-metallic, ferric oxide, and carbon nanotube-assisted SPR sensor for cancer detection

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In biomedical diagnostics, surface plasmon resonance (SPR) sensors have emerged as one of the most valuable instruments, particularly for identifying diverse biomarkers such as cancer. Here, we propose a novel layered SPR design that makes use of the optoelectronic properties of ferric oxide (Fe2O3), carbon nanotubes (CNTs), and bi-metallic (silver and platinum) materials to enhance the sensitivity and other performance metrics of SPR-based cancer detection. Because of its increased sensitivity to even minute variations in biomarker concentrations, the suggested sensor may prove helpful in the early identification and monitoring of cancer. The RI for different types of malignant cells varied from 1.392 to 1.401. The acquired numerical data indicate that the MCF-7 cell has the highest sensitivity of 320.571 deg/RIU. The highest values calculated for the characteristic’s parameters are 0.54 deg−1 detection accuracy, 174.129 RIU−1 figure of merit, and the lowest full width half maximum value of 1.841 deg, all for MCF-7 cells.

Graphical abstract

Surface plasmon resonance (SPR) sensors have become one of the most important tools in biomedical diagnostics, especially for the identification of various indicators like cancer. Here, we present a novel layered SPR design that improves the sensitivity and other performance metrics of SPR-based cancer detection by using the optoelectronic capabilities of carbon nanotubes (CNTs), ferric oxide (Fe2O3), and bi-metallic (silver and platinum) materials. The proposed sensor may be useful for early cancer detection and monitoring due to its enhanced sensitivity to even small changes in biomarker concentrations. The refractive index (RI) alterations of cancer cells are measured using the angle interrogation technique. Six distinct malignant cell types had RIs ranging from 1.392 to 1.401. According to the obtained numerical data, the MCF-7 cell has the maximum sensitivity, measuring 320.571 deg/RIU. The characteristic's parameters for MCF-7 cells have been computed to yield the greatest values: 0.54 deg-1 detection accuracy, 174.129 RIU-1 figure of merit, and the lowest full width at half maximum value of 1.841 deg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

No data available.

Code availability

Not applicable.

References

  1. R.L. Siegel, K.D. Miller, H.E. Fuchs, A. Jemal, Cancer statistics, 2022. CA Cancer J. Clin. 72(1), 7–33 (2022). https://doi.org/10.3322/caac.21708

    Article  PubMed  Google Scholar 

  2. R. Ramer, B. Hinz, Inhibition of cancer cell invasion by cannabinoids via increased expression of tissue inhibitor of matrix metalloproteinases-1. J. Natl. Cancer Inst. 100(1), 59–69 (2008). https://doi.org/10.1093/jnci/djm268

    Article  CAS  PubMed  Google Scholar 

  3. R. Cailleau, R. Young, M. Olivé, W.J. Reeves, Breast tumor cell lines from pleural effusions2. JNCI. J. Natl. Cancer Inst. 53(3), 661–674 (1974). https://doi.org/10.1093/jnci/53.3.661

    Article  CAS  PubMed  Google Scholar 

  4. M.H. Sani, S. Khosroabadi, A novel design and analysis of high-sensitivity biosensor based on nano-cavity for detection of blood component, diabetes, cancer and glucose concentration. IEEE Sens. J. 20(13), 7161–7168 (2020). https://doi.org/10.1109/JSEN.2020.2964114

    Article  CAS  Google Scholar 

  5. V.C. Diculescu, A.M.O. Brett, DNA-electrochemical biosensors and oxidative damage to DNA: application to cancer. Biosens. Cancer (2012). https://doi.org/10.1201/b12737-15

    Article  Google Scholar 

  6. R. Peltomaa, B. Glahn-Martínez, E. Benito-Peña, M.C. Moreno-Bondi, Optical biosensors for label-free detection of small molecules. Sensors (Basel) 18(12), 4126 (2018). https://doi.org/10.3390/s18124126

    Article  CAS  PubMed  Google Scholar 

  7. B. Hossain, A.K. Paul, A. Islam, M. Rahman, A.K. Sarkar, L.F. Abdulrazak, A highly sensitive surface plasmon resonance biosensor using snse allotrope and heterostructure of BlueP/MoS2 for cancerous cell detection. Optik (Stuttg) (2021). https://doi.org/10.1016/j.ijleo.2021.168506

    Article  Google Scholar 

  8. A.N. Yaroslavsky, X. Feng, S.H. Yu, P.R. Jermain, T.W. Iorizzo, V.A. Neel, Dual-wavelength optical polarization imaging for detecting skin cancer margins. J. Invest. Dermatol. 140(10), 1994-2000.e1 (2020). https://doi.org/10.1016/j.jid.2020.03.947

    Article  CAS  PubMed  Google Scholar 

  9. S. Firdous, S. Anwar, R. Rafya, Development of surface plasmon resonance (SPR) biosensors for use in the diagnostics of malignant and infectious diseases. Laser Phys. Lett. 15(6), 065602 (2018). https://doi.org/10.1088/1612-202X/aab43f

    Article  Google Scholar 

  10. M.A. Islam et al., Design and analysis of go coated high sensitive tunable SPR sensor for OATR spectroscopic biosensing applications. IEEE Access 10, 103496–103508 (2022). https://doi.org/10.1109/ACCESS.2022.3211099

    Article  Google Scholar 

  11. R. Kumar, S. Pal, Y.K. Prajapati, J.P. Saini, Sensitivity enhancement of MXene based SPR sensor using silicon: theoretical analysis. SILICON (2021). https://doi.org/10.1007/s12633-020-00558-3/Published

    Article  Google Scholar 

  12. L. He et al., Label-free femtomolar cancer biomarker detection in human serum using graphene-coated surface plasmon resonance chips. Biosens. Bioelectron. 89, 606–611 (2017). https://doi.org/10.1016/j.bios.2016.01.076

    Article  CAS  PubMed  Google Scholar 

  13. G. AlaguVibisha et al., Sensitivity enhancement of surface plasmon resonance sensor using hybrid configuration of 2D materials over bimetallic layer of Cu–Ni. Opt. Commun. 463, 125337 (2020). https://doi.org/10.1016/j.optcom.2020.125337

    Article  CAS  Google Scholar 

  14. M. El-assar, T.E. Taha, F.E.A. El-Samie, H.A. Fayed, M.H. Aly, ZnSe-based highly-sensitive SPR biosensor for detection of different cancer cells and urine glucose levels. Opt. Quantum Electron. 55(1), 76 (2022). https://doi.org/10.1007/s11082-022-04326-y

    Article  CAS  Google Scholar 

  15. O. Lazcka, F.J. Del Campo, F.X. Muñoz, Pathogen detection: A perspective of traditional methods and biosensors. Biosens. Bioelectron. 22(7), 1205–1217 (2007). https://doi.org/10.1016/j.bios.2006.06.036

    Article  CAS  PubMed  Google Scholar 

  16. F.-R. Li, Q. Li, H.-X. Zhou, H. Qi, C.-Y. Deng, “Detection of circulating tumor cells in breast cancer with a refined immunomagnetic nanoparticle enriched assay and nested-RT-PCR. Nanomed. Nanotechnol. Biol. Med. 9(7), 1106–1113 (2013). https://doi.org/10.1016/j.nano.2013.03.002

    Article  CAS  Google Scholar 

  17. L. Hajba, A. Guttman, Circulating tumor-cell detection and capture using microfluidic devices. TrAC Trends. Anal. Chem. 59, 9–16 (2014). https://doi.org/10.1016/j.trac.2014.02.017

    Article  CAS  Google Scholar 

  18. G. Verma, in Introducing Nanoscale: Its Realm and Attributes, ed. by G. Verma. Micro and Nano Technologies, Nanostructures (Elsevier, 2023), pp. 1–24. https://doi.org/10.1016/B978-0-12-820048-3.00013-9

  19. M.A. Mollah, M. Yousufali, I.M. Ankan, M.M. Rahman, H. Sarker, K. Chakrabarti, Twin core photonic crystal fiber refractive index sensor for early detection of blood cancer. Sens. Bio-Sens. Res. 29, 100344 (2020). https://doi.org/10.1016/j.sbsr.2020.100344

    Article  Google Scholar 

  20. A. Yasli, Cancer detection with surface plasmon resonance-based photonic crystal fiber biosensor. Plasmonics 16(5), 1605–1612 (2021). https://doi.org/10.1007/s11468-021-01425-6

    Article  CAS  Google Scholar 

  21. D. Sun, Y. Ran, G. Wang, Label-free detection of cancer biomarkers using an in-line taper fiber-optic interferometer and a fiber bragg grating. Sensors 17(11), 2556 (2017). https://doi.org/10.3390/s17112559

    Article  CAS  Google Scholar 

  22. A. Uniyal, B. Chauhan, A. Pal, Y. Singh, Surface plasmon biosensor based on Bi2Te3 antimonene heterostructure for the detection of cancer cells. Appl. Opt. 61(13), 3711–3719 (2022). https://doi.org/10.1364/AO.454789

    Article  CAS  PubMed  Google Scholar 

  23. M. Moznuzzaman, M.R. Islam, I. Khan, Effect of layer thickness variation on sensitivity: an SPR based sensor for formalin detection. Sens. Bio-Sens. Res. 32, 100419 (2021). https://doi.org/10.1016/j.sbsr.2021.100419

    Article  Google Scholar 

  24. A. Farmani, A. Mir, Graphene sensor based on surface plasmon resonance for optical scanning. IEEE Photonics Technol. Lett. 31(8), 643–646 (2019). https://doi.org/10.1109/LPT.2019.2904618

    Article  CAS  Google Scholar 

  25. V. Chabot, Y. Miron, M. Grandbois, P.G. Charette, Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth. Sens. Actuators, B Chem. 174, 94–101 (2012). https://doi.org/10.1016/j.snb.2012.08.028

    Article  CAS  Google Scholar 

  26. M. Pandaram, S. Santhanakumar, R. Veeran, R.K. Balasundaram, R. Jha, Z. Jaroszewicz, Platinum layers sandwiched between black phosphorous and graphene for enhanced SPR sensor performance. Plasmonics 17(1), 213–222 (2022). https://doi.org/10.1007/s11468-021-01507-5

    Article  CAS  Google Scholar 

  27. S. Shukla, M. Rani, N.K. Sharma, V. Sajal, Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor utilizing platinum layer. Optik (Stuttg) 126(23), 4636–4639 (2015)

    Article  CAS  Google Scholar 

  28. Z. Lin, S. Chen, C. Lin, Sensitivity improvement of a surface plasmon resonance sensor based on two-dimensional materials hybrid structure in visible region: A theoretical study. Sensors (Switzerland) 20(9), 2445 (2020). https://doi.org/10.3390/s20092445

    Article  CAS  Google Scholar 

  29. N.K. Sharma, S. Shukla, V. Sajal, Surface plasmon resonance based fiber optic sensor using an additional layer of platinum: A theoretical study. Optik (Stuttg) 133, 43–50 (2017). https://doi.org/10.1016/j.ijleo.2017.01.004

    Article  CAS  Google Scholar 

  30. A.M. Ahmed, M. Shaban, Highly sensitive Au–Fe2O3–Au and Fe2O3–Au–Fe2O3 biosensors utilizing strong surface plasmon resonance. Appl. Phys. B 126(4), 57 (2020). https://doi.org/10.1007/s00340-020-7405-7

    Article  CAS  Google Scholar 

  31. S. Knight et al., In-situ terahertz optical Hall effect measurements of ambient effects on free charge carrier properties of epitaxial graphene. Sci. Rep. 7(1), 5151 (2017). https://doi.org/10.1038/s41598-017-05333-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Y.J. Park, K.M.A. Sobahan, C.K. Hwangbo, Optical and structural properties of Fe2O3 thin films prepared by ion-beam assisted deposition. Surf. Coatings Technol. 203(17), 2646–2650 (2009). https://doi.org/10.1016/j.surfcoat.2009.02.085

    Article  CAS  Google Scholar 

  33. L. Dghoughi et al., Physico-chemical, optical and electrochemical properties of iron oxide thin films prepared by spray pyrolysis. Appl. Surf. Sci. 253(4), 1823–1829 (2006). https://doi.org/10.1016/j.apsusc.2006.03.021

    Article  CAS  Google Scholar 

  34. E.L. Miller, D. Paluselli, B. Marsen, R.E. Rocheleau, Low-temperature reactively sputtered iron oxide for thin film devices. Thin Solid Films 466(1), 307–313 (2004). https://doi.org/10.1016/j.tsf.2004.02.093

    Article  CAS  Google Scholar 

  35. N. Beermann, L. Vayssieres, S. Lindquist, A. Hagfeldt, Photoelectrochemical studies of oriented nanorod thin films of hematite. J. Electrochem. Soc. 147(7), 2456 (2000). https://doi.org/10.1149/1.1393553

    Article  CAS  Google Scholar 

  36. A. Joshi, L. Sharma, S. Kaur, K. Dharamvir, H. Nayyar, G. Verma, Plant nanobionic effect of multi-walled carbon nanotubes on growth, anatomy, yield and grain composition of rice. Bionanoscience 10(2), 430–445 (2020). https://doi.org/10.1007/s12668-020-00725-1

    Article  Google Scholar 

  37. C.-M. Tîlmaciu, M.C. Morris, Carbon nanotube biosensors. Front. Chem. (2015). https://doi.org/10.3389/fchem.2015.00059

    Article  PubMed  PubMed Central  Google Scholar 

  38. P. Kaur, S. Jaiswal, D. Manhas, V. Kaur, V. Babar, G. Verma, An experimental and theoretical approach to organic functionalization of carbon nanofibers using fresh neem leaves. Int. J. Hydrogen Energy 48(70), 27242–27258 (2023). https://doi.org/10.1016/j.ijhydene.2023.03.432

    Article  CAS  Google Scholar 

  39. C. Li, G. Shi, Carbon nanotube-based fluorescence sensors. J. Photochem. Photobiol. C Photochem. Rev. 19, 20–34 (2014). https://doi.org/10.1016/j.jphotochemrev.2013.10.005

    Article  CAS  Google Scholar 

  40. D.A. Heller et al., Peptide secondary structure modulates single-walled carbon nanotube fluorescence as a chaperone sensor for nitroaromatics. Proc. Natl. Acad. Sci. U.S.A. 108(21), 8544–8549 (2011). https://doi.org/10.1073/pnas.1005512108

    Article  PubMed  PubMed Central  Google Scholar 

  41. A. Pal, A. Jha, A theoretical analysis on sensitivity improvement of an SPR refractive index sensor with graphene and barium titanate nanosheets. Optik (Stuttg). 231, 166378 (2021). https://doi.org/10.1016/j.ijleo.2021.166378

    Article  CAS  Google Scholar 

  42. G. Ansari, A. Pal, A.K. Srivastava, G. Verma, Detection of hemoglobin concentration in human blood samples using a zinc oxide nanowire and graphene layer heterostructure based refractive index biosensor. Opt. Laser Technol. 164(2), 111 (2023). https://doi.org/10.1016/0030-3992(80)90045-6

    Article  Google Scholar 

  43. K. Shah, N.K. Sharma, V. Sajal, Analysis of fiber optic SPR sensor utilizing platinum based nanocomposites. Opt. Quantum Electron. (2018). https://doi.org/10.1007/s11082-018-1533-x

    Article  Google Scholar 

  44. G. Ansari, A. Pal, A.K. Srivastava, G. Verma, Machine learning approach to surface plasmon resonance bio-chemical sensor based on nanocarbon allotropes for formalin detection in water. Sens. Bio-Sens. Res. 42, 100605 (2023). https://doi.org/10.1016/j.sbsr.2023.100605

    Article  Google Scholar 

  45. S. Wang, N. Liu, Q. Cheng, B. Pang, J. Lv, Surface plasmon resonance on the antimonene–Fe2O3–copper layer for optical attenuated total reflection spectroscopic application. Plasmonics 16(2), 559–566 (2021). https://doi.org/10.1007/s11468-020-01309-1

    Article  CAS  Google Scholar 

  46. B. Karki, P. Sarkar, G. Dhiman, G. Srivastava, M. Kumar, Platinum diselenide and graphene-based refractive index sensor for cancer detection. Plasmonics (2023). https://doi.org/10.1007/s11468-023-02051-0

    Article  PubMed  PubMed Central  Google Scholar 

  47. B. Karki, A. Uniyal, A. Pal, V. Srivastava, Advances in surface plasmon resonance-based biosensor technologies for cancer cell detection. Int. J. Opt. 2022, 1476254 (2022). https://doi.org/10.1155/2022/1476254

    Article  CAS  Google Scholar 

  48. Y. Xu, Y.S. Ang, L. Wu, L.K. Ang, High sensitivity surface plasmon resonance sensor based on two-dimensional mxene and transition metal dichalcogenide: A theoretical study. Nanomaterials 9(2), 165 (2019). https://doi.org/10.3390/nano9020165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. R. Kumar, S. Pal, Y.K. Prajapati, S. Kumar, J.P. Saini, Sensitivity improvement of a MXene- immobilized SPR sensor with Ga-doped-ZnO for biomolecules detection. IEEE Sens. J. 22(7), 6536–6543 (2022). https://doi.org/10.1109/JSEN.2022.3154099

    Article  CAS  Google Scholar 

  50. Y. Zhao, S. Gan, G. Zhang, X. Dai, High sensitivity refractive index sensor based on surface plasmon resonance with topological insulator. Results Phys. 14, 102477 (2019). https://doi.org/10.1016/j.rinp.2019.102477

    Article  Google Scholar 

  51. A.H.M. Almawgani et al., Sensitivity enhancement of optical plasmon-based sensor for detection of the hemoglobin and glucose: A numerical approach. Opt. Quantum Electron. 55(11), 963 (2023)

    Article  CAS  Google Scholar 

  52. A. Uniyal, G. Srivastava, P. Sarkar, M. Kumar, S. Singh, Fluorinated graphene and CNT-based surface plasmon resonance sensor for detecting the viral particles of SARS-CoV-2. Phys. B Condens. Matter. 669, 415282 (2023). https://doi.org/10.1016/j.physb.2023.415282

    Article  CAS  Google Scholar 

  53. A.H.M. Almawgani et al., Magnesium oxide and silicon-assisted surface plasmon resonance sensor for gas detection: A performance analysis. Plasmonics (2024). https://doi.org/10.1007/s11468-023-02174-4

    Article  Google Scholar 

  54. D. Pal et al., A highly sensitive long-range surface plasmon resonance biosensor for the determination of hemoglobin content in human blood. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02243-2

    Article  Google Scholar 

  55. B. Karki, A. Pal, P. Sarkar, A. Uniyal, R.B. Yadav, Gold, MXene, and graphene nanofilm-based surface plasmon resonance sensor for malaria detection. J. Opt. (2024). https://doi.org/10.1007/s12596-024-01661-z

    Article  Google Scholar 

  56. B. Karki, A. Uniyal, P. Sarkar, A. Pal, R.B. Yadav, Sensitivity improvement of surface plasmon resonance sensor for glucose detection in urine samples using heterogeneous layers: an analytical perspective. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01418-0

    Article  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

Gufranullah Ansari contributed toward conceptualization (equal) and writing—review & editing (equal), Amrindra Pal contributed toward methodology (equal), and writing—review & editing (equal), Alok K. Srivastava contributed toward investigation (equal), methodology (equal), and Supervision (Lead), Gaurav Verma contributed toward investigation (equal), formal analysis (equal), and supervision (Lead).

Corresponding author

Correspondence to Gaurav Verma.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Ethical approval

Not applicable. The work presented in this manuscript is mathematical modeling only for the proposed biosensor. No experiment was performed on the human body and living organisms/animals. So, ethical approval from an ethical committee is not required.

Consent to participant

I am willing to participate in the work presented in this manuscript.

Consent for publication

The author has given their consent to publish this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, G., Pal, A., Srivastava, A.K. et al. Bi-metallic, ferric oxide, and carbon nanotube-assisted SPR sensor for cancer detection. Journal of Materials Research (2024). https://doi.org/10.1557/s43578-024-01358-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43578-024-01358-w

Navigation