Skip to main content
Log in

Surface Plasmon Resonance on the Antimonene–Fe2O3–Copper Layer for Optical Attenuated Total Reflection Spectroscopic Application

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we explore a highly sensitive surface plasmon resonance (SPR) structure. The configuration fabricated by the antimonene-Fe2O3-copper (Cu) is theoretically analyzed. Fe2O3 work as dielectric nanosheets to enhance the sensitivity. Besides, the x components of the electric field also can be improved. As promising two-dimensional (2D) material with a stronger interaction with biomolecules and higher chemical stability, antimonene exhibits potential applications in sensing. By optimizing the configuration parameters, the highest angular sensitivity of 398°/RIU. The result displays that the sensitivity is enhanced by 79.3% compared with the conventional configuration with a single Cu film. We hope that the simple configuration will find the suitable application value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chiu NF, Yang HT (2020) High-sensitivity detection of the lung cancer biomarker CYFRA21-1 in serum samples using a carboxyl-MoS2 functional film for SPR-based immunosensors. Front Bioeng Biotechnol 8:234

    Article  Google Scholar 

  2. Zhou J, Qi Q, Wang C, Qian Y, Liu G, Wang Y, Fu L (2019) Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices. Biosens Bioelectron 142:111449

    Article  CAS  Google Scholar 

  3. Daware K, Kasture M, Kalubarme R, Shinde R, Patil K, Suzuki N, Terashima C, Gosavi S, Fujishima A (2019) Detection of toxic metal ions Pb2+ in water using SiO2@Au core-shell nanostructures: a simple technique for water quality monitoring. Chemical Physics Letters 732

  4. Zhou J, Wang Y, Qian Y, Zhang T, Zheng L, Fu L (2020) Quantification of shellfish major allergen tropomyosin by SPR biosensor with gold patterned Biochips. Food Control 107

  5. Syubaev SA, Zhizhchenko AY, Pavlov DV, Gurbatov SO, Pustovalov EV, Porfirev AP, Khonina SN, Kulinich SA, Rayappan JBB, Kudryashov SI, Kuchmizhak AA (2019) Plasmonic nanolenses produced by cylindrical vector beam printing for sensing applications. Sci Rep 9(1):19750

    Article  CAS  Google Scholar 

  6. Yi Z, Liang C, Chen X, Zhou Z, Tang Y, Ye X, Yi Y, Wang J, Wu P (2019) Dual-band plasmonic perfect absorber based on graphene metamaterials for refractive index sensing application. Micromachines (Basel) 10(7)

  7. Li M, Cushing SK, Wu N (2015) Plasmon-enhanced optical sensors: a review. Analyst 140(2):386–406

    Article  CAS  Google Scholar 

  8. Wu L, You Q, Shan Y, Gan S, Zhao Y, Dai X, Xiang Y (2018) Few-layer Ti3C2Tx MXene: a promising surface plasmon resonance biosensing material to enhance the sensitivity. Sensors and Actuators B: Chemical 277:210–215

    Article  CAS  Google Scholar 

  9. Xue T, Liang W, Li Y, Sun Y, Xiang Y, Zhang Y, Dai Z, Duo Y, Wu L, Qi K, Shivananju BN, Zhang L, Cui X, Zhang H, Bao Q (2019) Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat Commun 10(1):28

    Article  CAS  Google Scholar 

  10. Sharma VK, Madaan D, Kapoor A (2020) Narrow resonance and ultrahigh sensitivity plasmonic waveguide refractive index sensor. Measurement Science and Technology 31(7)

  11. Yang L, Wang J, Yang LZ, Hu ZD, Wu X, Zheng G (2018) Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory. Sci Rep 8(1):2560

    Article  Google Scholar 

  12. Rifat AA, Mahdiraji GA, Chow DM, Shee YG, Ahmed R, Adikan FR (2015) Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors (Basel) 15(5):11499–11510

    Article  CAS  Google Scholar 

  13. West PR, Ishii S, Naik GV, Emani NK, Shalaev VM, Boltasseva A (2010) Searching for better plosmonic materials. Laser Photonics Rev 4(6):795–808

    Article  CAS  Google Scholar 

  14. Panin A, Shugurov A, Kazachenok M, Sergeev V (2019) Improvement of thermal cycling resistance of AlxSi1-xN coatings on Cu substrates by optimizing Al/Si Ratio. Materials (Basel) 12(14)

  15. Lahav A, Auslender M, Abdulhalim I (2008) Sensitivity enhancement of guided-wave surface-plasmon resonance sensors. Opt Lett 33(21):2539–2541

    Article  CAS  Google Scholar 

  16. Ahmed AM, Shaban M (2020) Highly sensitive Au–Fe2O3–Au and Fe2O3–Au–Fe2O3 biosensors utilizing strong surface plasmon resonance. Applied Physics B 126(4).

  17. Knight S, Hofmann T, Bouhafs C, Armakavicius N, Kuhne P, Stanishev V, Ivanov IG, Yakimova R, Wimer S, Schubert M, Darakchieva V (2017) In-situ terahertz optical Hall effect measurements of ambient effects on free charge carrier properties of epitaxial graphene. Sci Rep 7(1):5151

    Article  Google Scholar 

  18. Lin Z, Chen S, Lin C (2020) Sensitivity improvement of a surface plasmon resonance sensor based on two-dimensional materials hybrid structure in visible region: a theoretical study. Sensors (Basel) 20(9)

  19. Yu X, Yuan Y, Xiao B, Li Z, Qu J, Song J (2018) Flexible plasmonic pressure sensor based on layered two-dimensional heterostructures. J Lightwave Technol 36(23):5678–5684

    Article  CAS  Google Scholar 

  20. Verma R, Gupta BD, Jha R (2011) Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sensors and Actuators B: Chemical 160(1):623–631

    Article  CAS  Google Scholar 

  21. Jia Y, Li Z, Wang H, Saeed M, Cai H (2019) Sensitivity enhancement of a surface plasmon resonance sensor with platinum diselenide. Sensors (Basel) 20(1)

  22. Wu L, Guo J, Wang Q, Lu S, Dai X, Xiang Y, Fan D (2017) Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sensors and Actuators B: Chemical 249:542–548

    Article  CAS  Google Scholar 

  23. Ouyang Q, Zeng S, Dinh X-Q, Coquet P, Yong K-T (2016) Sensitivity enhancement of MoS2 nanosheet based surface plasmon resonance biosensor. Procedia Engineering 140:134–139

    Article  CAS  Google Scholar 

  24. Wu L, Guo J, Dai X, Xiang Y, Fan D (2017) Sensitivity enhanced by MoS2–graphene hybrid structure in guided-wave surface plasmon resonance biosensor. Plasmonics 13(1):281–285

    Article  Google Scholar 

  25. Xu Y, Ang YS, Wu L, Ang LK (2019) High sensitivity surface plasmon resonance sensor based on two-dimensional MXene and transition metal dichalcogenide: a theoretical study. Nanomaterials (Basel) 9(2)

  26. Yue C, Lang Y, Zhou X, Liu Q (2019) Sensitivity enhancement of an SPR biosensor with a graphene and blue phosphorene/transition metal dichalcogenides hybrid nanostructure. Appl Opt 58(34):9411–9420

    Article  CAS  Google Scholar 

  27. Wu L, Ling Z, Jiang L, Guo J, Dai X, Xiang Y, Fan D (2016) Long- range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor. IEEE Photonics J 8(2):1–9

    Google Scholar 

  28. Ji L, Chen Y, Yuan YJ (2014) Investigation of surface plasmon resonance phenomena by finite element analysis and Fresnel calculation. Sensors and Actuators B: Chemical 198:82–86

    Article  CAS  Google Scholar 

  29. Baldini F, Homola J, Lieberman RA, Bhavsar K, Prabhu R, Pollard P (2015) "Ultrasensitive graphene coated SPR sensor for biosensing applications," in Optical Sensors 2015

  30. Srivastava A, Prajapati YK (2019) Performance analysis of silicon and blue phosphorene/MoS2 hetero-structure based SPR sensor. Photonic Sensors 9(3):284–292

    Article  CAS  Google Scholar 

  31. Zeng S, Hu S, Xia J, Anderson T, Dinh X-Q, Meng X-M, Coquet P, Yong K-T (2015) Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sensors and Actuators B: Chemical 207:801–810

    Article  CAS  Google Scholar 

  32. Xu Y, Wu L, Ang LK (2019) MoS2-based highly sensitive near-infrared surface plasmon resonance refractive index sensor. IEEE J Sel Top Quantum Electron 25(2):1–7

    Article  Google Scholar 

  33. Xu Y, Hsieh CY, Wu L, Ang LK (2019) Two-dimensional transition metal dichalcogenides mediated long range surface plasmon resonance biosensors. Journal of Physics D: Applied Physics 52(6)

  34. Lin Z, Jiang L, Wu L, Guo J, Dai X, Xiang Y, Fan D (2016) Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au-MoS 2-Au films. IEEE Photonics J 8(6):1–8

    Article  Google Scholar 

  35. Wu L, Jia Y, Jiang L, Guo J, Dai X, Xiang Y, Fan D (2017) Sensitivity improved SPR biosensor based on the MoS2/graphene–aluminum hybrid structure. J Lightwave Technol 35(1):82–87

    Article  CAS  Google Scholar 

  36. Han L, He X, Ge L, Huang T, Ding H, Wu C (2019) Comprehensive study of SPR biosensor performance based on metal-ITO-graphene/TMDC hybrid multilayer. Plasmonics 14(6):2021–2030

    Article  CAS  Google Scholar 

  37. Han L, Ding H, Landry NNA, Hua M, Huang T (2020) Highly sensitive SPR sensor based on Ag-ITO-BlueP/TMDCs-graphene heterostructure. Plasmonics

  38. Zhao X, Huang T, Ping PS, Wu X, Huang P, Pan J, Wu Y, Cheng Z (2018) Sensitivity enhancement in surface plasmon resonance biochemical sensor based on transition metal dichalcogenides/graphene heterostructure. Sensors (Basel) 18(7)

Download references

Funding

This work is partially supported by the National Natural Science Foundation of China (NSFC) (61771419), Hebei Province Natural Science Foundation (F2017203220) and Hebei Province Innovation Foundation for Postgraduate (CXZZSS2020051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangtao Lv.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Liu, N., Cheng, Q. et al. Surface Plasmon Resonance on the Antimonene–Fe2O3–Copper Layer for Optical Attenuated Total Reflection Spectroscopic Application. Plasmonics 16, 559–566 (2021). https://doi.org/10.1007/s11468-020-01309-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01309-1

Keywords

Navigation