Skip to main content
Log in

Enhancing the photocatalytic performance of g-C3N4 (GCN) via La–ZnO nanocomposite (Z-scheme mechanism) against toxic pharmaceutical pollutant

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Highly effective Z-scheme La–ZnO/GCN nanocomposite (LZG) were synthesized via hydrothermal and ultrasonication methods. The prepared samples were further analyzed through varies techniques like X-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM), X-ray photoelectron spectroscopy (XPS) and UV–visible spectroscopy. XRD confirms the non-detection of secondary phase formation and decrementing pattern of crystallite size confirm La ions presence in host lattice. Presence of La–ZnO nanorods on nanosheets of GCN are well observed from the HRSEM analysis. Enhancement in pollutant degradation was accredited due to higher charge transfer property observed from EIS (Electrochemical impedance spectroscopy). First-order Langmuir–Hinshelwood relation reveals about the higher rate of reaction (0.01796 × 10–2 min−1), around 84% of TC pollutant degradation by 10-10LZG nanocomposite within the time span of 80 min. The current research supports a novel design of nanocomposite with an electron trapper for hindering charge recombination process and enhancing the degradation of pharmaceutical pollutants.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are included in this published article.

Code availability

Not applicable.

References

  1. M.B. Gawande, A. Goswami, F.X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R.S. Varma, Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem. Rev. 116, 3722–3811 (2016). https://doi.org/10.1021/acs.chemrev.5b00482

    Article  CAS  Google Scholar 

  2. N.R. Khalid, U. Mazia, M.B. Tahir, N.A. Niaz, M.A. Javid, Photocatalytic degradation of RhB from an aqueous solution using Ag3PO4/N-TiO2 heterostructure. J. Mol. Liq. 313, 113522 (2020). https://doi.org/10.1016/j.molliq.2020.113522

    Article  CAS  Google Scholar 

  3. Y.M. Hunge, A.A. Yadav, S. Kang, H. Kim, Photocatalytic degradation of tetracycline antibiotics using hydrothermally synthesized two-dimensional molybdenum disulfide/titanium dioxide composites. J. Colloid Interface Sci. 606, 454–463 (2022). https://doi.org/10.1016/j.jcis.2021.07.151

    Article  CAS  Google Scholar 

  4. F.E. Titchou, H. Zazou, H. Afanga, J. El Gaayda, R.A. Akbour, M. Hamdani, Removal of persistent organic pollutants (POPs) from water and wastewater by adsorption and electrocoagulation process. Groundw. Sustain. Dev. 13, 100575 (2021). https://doi.org/10.1016/j.gsd.2021.100575

    Article  Google Scholar 

  5. I.M.F. Cardoso, R.M.F. Cardoso, J.C.G. Esteves de Silva, Advanced oxidation processes coupled with nanomaterials for water advanced oxidation processes coupled with nanomaterials for water treatment. Nanomaterials 11(8), 2045 (2021). https://doi.org/10.3390/nano11082045

    Article  CAS  Google Scholar 

  6. M. Qiu, B. Hu, Z. Chen, H. Yang, L. Zhuang, X. Wang, Challenges of organic pollutant photocatalysis by biochar-based catalysts. Biochar. 3, 117–123 (2021). https://doi.org/10.1007/s42773-021-00098-y

    Article  CAS  Google Scholar 

  7. R.R. Chandrapal, S. Bharathkumar, G. Bakiyaraj, V. Ganesh, J. Archana, M. Navaneethan, Hydrothermally synthesized strontium-modified ZnO hierarchical nanostructured photocatalyst for second-generation fluoroquinolone degradation. Appl. Nanosci. 12, 1869–1884 (2022). https://doi.org/10.1007/s13204-022-02414-9

    Article  CAS  Google Scholar 

  8. S. Yu, H. Pang, S. Huang, H. Tang, S. Wang, M. Qiu, Z. Chen et al., Recent advances in metal-organic framework membranes for water treatment: A review. Sci. Total Environ. 800, 149662 (2021). https://doi.org/10.1016/j.scitotenv.2021.149662

    Article  CAS  Google Scholar 

  9. L. Liang, F. Xi, W. Tan, X. Meng, B. Hu, X. Wang, Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar 3, 255–281 (2021). https://doi.org/10.1007/s42773-021-00101-6

    Article  CAS  Google Scholar 

  10. F. Liu, Y. Lou, F. Xia, B. Hu, Immobilizing nZVI particles on MBenes to enhance the removal of U (VI) and Cr (VI) by adsorption-reduction synergistic effect. J. Chem. Eng. 454, 140318 (2023). https://doi.org/10.1016/j.cej.2022.140318

    Article  CAS  Google Scholar 

  11. M.S. Chavali, M.P. Nikolova, Metal oxide nanoparticles and their applications in nanotechnology. SN Appl. Sci. 1, 607 (2019). https://doi.org/10.1007/s42452-019-0592-3

    Article  CAS  Google Scholar 

  12. M. Tahir, S. Tasleem, B. Tahir, Recent development in band engineering of binary semiconductor materials for solar driven photocatalytic hydrogen production. Int. J. Hydrogen Energy. 45, 15985–16038 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.071

    Article  CAS  Google Scholar 

  13. C. Klingshirn, ZnO: material, physics and applications. ChemPhysChem 8, 782–803 (2007). https://doi.org/10.1002/cphc.200700002

    Article  CAS  Google Scholar 

  14. M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 605, 2–19 (2016). https://doi.org/10.1016/j.tsf.2015.12.064

    Article  CAS  Google Scholar 

  15. T. Jia, W. Wang, F. Long, Z. Fu, H. Wang, Q. Zhang, Fabrication, characterization and photocatalytic activity of La-doped ZnO nanowires. J. Alloys Compd. 484, 410–415 (2009). https://doi.org/10.1016/j.jallcom.2009.04.153

    Article  CAS  Google Scholar 

  16. P. Pascariu, M. Homocianu, C. Cojocaru, P. Samoila, A. Airinei, M. Suchea, Preparation of La doped ZnO ceramic nanostructures by electrospinning–calcination method: Effect of La3+ doping on optical and photocatalytic properties. Appl. Surf. Sci. 476, 16–27 (2019). https://doi.org/10.1016/j.apsusc.2019.01.077

    Article  CAS  Google Scholar 

  17. R. Bomila, S. Srinivasan, S. Gunasekaran, A. Manikandan, Enhanced photocatalytic degradation of methylene blue dye, opto-magnetic and antibacterial behaviour of pure and La-doped ZnO nanoparticles. J. Supercond. Nov. Magn. 31, 855–864 (2018). https://doi.org/10.1007/s10948-017-4261-8

    Article  CAS  Google Scholar 

  18. N.S. Alharbi, B. Hu, T. Hayat, S.O. Rabah, A. Alsaedi, L. Zhuang, X. Wang, Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials. Front. Chem. Sci. Eng. 14, 1124–1135 (2020). https://doi.org/10.1007/s11705-020-1923-z

    Article  CAS  Google Scholar 

  19. J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72–123 (2017). https://doi.org/10.1016/j.apsusc.2016.07.030

    Article  CAS  Google Scholar 

  20. J. Fu, J. Yu, C. Jiang, B. Cheng, g-C3N4 -Based heterostructured photocatalysts. Adv. Energy Mater. 8(3), 1701503 (2018). https://doi.org/10.1002/aenm.201701503

    Article  CAS  Google Scholar 

  21. M. Zhou, Z. Hou, X. Chen, The effects of hydrogenation on graphitic C3N4 nanosheets for enhanced photocatalytic activity. Part. Part. Syst. Charact. 35, 1700038 (2018). https://doi.org/10.1002/ppsc.201700038

    Article  CAS  Google Scholar 

  22. W. Yu, D. Xu, T. Peng, Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: A direct Z- scheme mechanism. J. Mater. Chem. A 3, 19936–19947 (2015). https://doi.org/10.1039/C5TA05503B

    Article  CAS  Google Scholar 

  23. G. Liu, M. Liao, Z. Zhang, H. Wang, D. Chen, Y. Feng, Enhanced photodegradation performance of Rhodamine B with g-C3N4 modified by carbon nanotubes. Sep. Purif. Technol. 244, 116618 (2020). https://doi.org/10.1016/j.seppur.2020.116618

    Article  CAS  Google Scholar 

  24. P.V. Korake, R.S. Dhabbe, A.N. Kadam, Y.B. Gaikwad, K.M. Garadkar, Highly active lanthanum doped ZnO nanorods for photodegradation of metasystox. J. Photochem. Photobiol. B: Biol. 130, 11–19 (2014). https://doi.org/10.1016/j.jphotobiol.2013.10.012

    Article  CAS  Google Scholar 

  25. M.U. Yousaf, E. Pervaiz, S. Minallah, M.J. Afzal, L. Honghong, M. Yang, Tin oxide quantum dots decorated graphitic carbon nitride for enhanced removal of organic components from water: Green process. Results Phys. 14, 102455 (2019). https://doi.org/10.1016/j.rinp.2019.102455

    Article  Google Scholar 

  26. V.P. Dinesh, P. Biji, A. Ashok, S.K. Dhara, M. Kamruddin, A.K. Tyagi, B. Raj, Plasmon -mediated highly enhanced photocatalytic degradation of industrial textile effluent dyes using hybrid ZnO@Ag core-shell nanorods. RSC Adv. 103, 58930–58940 (2014). https://doi.org/10.1039/C4RA09405K

    Article  CAS  Google Scholar 

  27. S.Y. Pung, W.P. Lee, A. Aziz, Kinetic study of organic dye degradation using ZnO particles with different morphologies as a photocatalyst. Int. J. Inorg. Chem. (2012). https://doi.org/10.1155/2012/608183

    Article  Google Scholar 

  28. Y. Sheng, Y. Jiang, X. Lan, C. Wang, S. Li, X. Liu, H. Zhong, Mechanism and growth of flexible ZnO nanostructure arrays in a facile controlled way. J. Nanomater. (2011). https://doi.org/10.1155/2011/473629

    Article  Google Scholar 

  29. R. Hao, S. Luo, F. Wang, X. Pan, J. Yao, J. Wu, H. Fang, W. Li, Enhancement of fluorescence and anti-tumor effect of ZnO QDs by La doping. Front. Chem. 10, 1042038 (2022). https://doi.org/10.3389/fchem.2022.1042038

    Article  CAS  Google Scholar 

  30. M. Kumar, K. Negi, A. Umar, M.S. Chauhan, Photocatalytic and fluorescent chemical sensing applications of La-doped ZnO nanoparticles. Chem. Pap. 75, 1555–1566 (2021). https://doi.org/10.1007/s11696-020-01388-8

    Article  CAS  Google Scholar 

  31. Y. Al-Hadeethi, A. Umar, K. Singh, A.A. Ibrahim, S. Al-Heniti, B.M. Raffah, Ytterbium-doped ZnO flowers based phenyl hydrazine chemical sensor. J. Nanosci. Nanotechnol. 19, 4199–4204 (2019). https://doi.org/10.1166/jnn.2019.16283

    Article  CAS  Google Scholar 

  32. G. Nagaraju, S.A. Prashanth, M. Shastri, K.V. Yathish, C. Anupama, D. Rangappa, Electrochemical heavy metal detection, photocatalytic, photoluminescence, biodiesel production and antibacterial activities of Ag–ZnO nanomaterial. Mater. Res. Bull. 94, 54–63 (2017). https://doi.org/10.1016/j.materresbull.2017.05.043

    Article  CAS  Google Scholar 

  33. L.V. Bettina, M. Döblinger, J. Sehnert, L. Seyfarth, J. Senker, O. Oeckler, W. Schnick, Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations—structural characterization of a carbon nitride polymer. Chem. Eur. J. 13, 4969–4980 (2007). https://doi.org/10.1002/chem.200601759

    Article  CAS  Google Scholar 

  34. D.R. Paul, S. Gautam, P. Panchal, S.P. Nehra, P. Choudhary, A. Sharma, ZnO-modified g-C3N4: a potential photocatalyst for environmental application. ACS Omega 5, 3828–3838 (2020). https://doi.org/10.1021/acsomega.9b02688

    Article  CAS  Google Scholar 

  35. A.K. Zak, M.E. Abrishami, W.H.A. Majid, R. Yousefi, S.M. Hosseini, Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol–gel combustion method. Ceram. Int. 37, 393–398 (2011). https://doi.org/10.1016/j.ceramint.2010.08.017

    Article  CAS  Google Scholar 

  36. I. Khan, K. Saeed, I. Khan, Nanoparticles : Properties, applications and toxicities. Arab. J. Chem. 12, 908–931 (2019). https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  CAS  Google Scholar 

  37. S.J. Gilliland, J.A. Sans, J.F. Sánchez-Royo, G. Almonacid, B. Garcìa, A. Segura, G. Tobias, E. Canadell, Role of p-d and s-d interactions in the electronic structure and band gap of Zn1 − x MxO (M=Cr, Mn, Fe Co, Ni, and Cu): Photoelectron and optical spectroscopy and first-principles band structure calculations. Phys. Rev. B 86, 155203 (2012). https://doi.org/10.1103/PhysRevB.86.155203

    Article  CAS  Google Scholar 

  38. M.K. Debanath, S. Karmakar, Study of blueshift of optical band gap in zinc oxide (ZnO) nanoparticles prepared by low-temperature wet chemical method. Mater. Lett. 111, 116–119 (2013). https://doi.org/10.1016/j.matlet.2013.08.069

    Article  CAS  Google Scholar 

  39. Q. Li, X. Ma, H. Liu, Z. Chen, H. Chen, S. Chu, Self-organized growth of two-dimensional GaTe nanosheet on ZnO nanowires for heterojunctional water splitting applications. ACS Appl. Mater. Interfaces 22, 18836–18844 (2017). https://doi.org/10.1021/acsami.7b04199

    Article  CAS  Google Scholar 

  40. H.D. Zhang, M. Yu, J.C. Zhang, C.H. Sheng, X. Yan, W.P. Han, Y.C. Liu, S. Chen, G.Z. Shen, Y.Z. Long, Fabrication and photoelectric properties of La-doped p-type ZnO nanofibers and crossed p–n homojunctions by electrospinning. Nanoscale 23, 10513–10518 (2015). https://doi.org/10.1039/c5nr02191j

    Article  CAS  Google Scholar 

  41. W. Lu, D. Zhu, Synthesis and characterization of La- and Ce-codoped polycrystal ZnO prepared by hydrothermal method for 1,2-propanediol. Appl. Phys. A 125, 68 (2019). https://doi.org/10.1007/s00339-019-2380-8

    Article  CAS  Google Scholar 

  42. C.K. Swamy, A. Hezam, A.M. Ramesh, D.H. Ramakrishnegowda, D.K. Purushothama, J. Krishnegowda, K.S. Rangappa, S. Shivanna, Microwave hydrothermal synthesis of copper induced ZnO/gC3N4 heterostructure with efficient photocatalytic degradation through S-scheme mechanism. J. Photochem. Photobiol. A Chem. 418, 113394 (2021). https://doi.org/10.1016/j.jphotochem.2021.113394

    Article  CAS  Google Scholar 

  43. G. Xu, F. You, X. Li, La-doped ZnO / g-C3N4 heterojunction for efficient degradation of organic contamination under visible light irradiation. J. Inorg. Organomet. Polym. Mater. 31, 375–383 (2021). https://doi.org/10.1007/s10904-020-01779-0

    Article  CAS  Google Scholar 

  44. S. Pareek, J.K. Quamara, Dielectric and optical properties of graphitic carbon nitride – titanium dioxide nanocomposite with enhanced charge seperation. J. Mater. Sci. 53, 604–612 (2018). https://doi.org/10.1007/s10853-017-1506-7

    Article  CAS  Google Scholar 

  45. H. Qin, Y. Zuo, J. Jin, W. Wang, Y. Xu, L. Cui, H. Dang, ZnO nanorod arrays grown on g-C3N4 micro-sheets for enhanced visible light photocatalytic H2 evolution. RSC Adv. 9, 24483–24488 (2019). https://doi.org/10.1039/c9ra03426a

    Article  CAS  Google Scholar 

  46. Z. Lan, G. Zhang, X. Wang, A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox water splitting. Appl. Catal. B Environ. 192, 116–125 (2016). https://doi.org/10.1016/j.apcatb.2016.03.062

    Article  CAS  Google Scholar 

  47. L. Wei, J. Tian, Q. Wang, Y. Liu, Y. Yu, C. Yang, A study on the mechanism and kinetic of nitrate reduction by the nZVI–g-C3N4/TiO2 composite under the simulated sunlight. J. Mater. Sci. Mater. Electron. 32, 15864–15881 (2021). https://doi.org/10.1007/s10854-021-06139-3

    Article  CAS  Google Scholar 

  48. J.T. Schneider, D.S. Firak, R.R. Ribeiro, P.P. Zamora, Use of scavenger agents in heterogeneous photocatalysis: truths, half-truths, and misinterpretations. Phys. Chem. Chem. Phys. 22, 15723–15733 (2020). https://doi.org/10.1039/D0CP02411B

    Article  CAS  Google Scholar 

  49. J. Qiu, M. Guo, Y. Feng, X. Wang, Electrochemical deposition of branched hierarchical ZnO nanowire arrays and its photoelectrochemical properties. Electrochim. Acta. 56, 5776–5782 (2011). https://doi.org/10.1016/j.electacta.2011.04.059

    Article  CAS  Google Scholar 

  50. D.T. Dimitrov, M.M. Milanova, R.P. Kralshevska, Lanthanide oxide doped titania photocatalysts for degradation of organic pollutants under UV and visible light illumination. Bulg. Chem. Commun. 43(4), 489–501 (2011)

    CAS  Google Scholar 

  51. Q.T.H. Ta, G. Namgung, J.S. Noh, Facile synthesis of porous metal-doped ZnO/g-C3N4 composites for highly efficient photocatalysts. J. Photochem. Photobiol. A: Chem. 368, 110–119 (2019). https://doi.org/10.1016/j.jphotochem.2018.09.049

    Article  CAS  Google Scholar 

  52. M. Rostami, Construction of La-doped TiO2@La-doped ZnO–B- doped reduced graphene oxide ternary nanocomposites for improved visible light photocatalytic activity. RSC Adv. 7, 43424–43431 (2017). https://doi.org/10.1039/C7RA06767D

    Article  CAS  Google Scholar 

  53. M.A. Qamar, M. Javed, S. Shahid, M. Sher, Fabrication of g-C3N4/transition metal (Fe Co, Ni, Mn and Cr)-doped ZnO ternary composites: Excellent visible light active photocatalysts for the degradation of organic pollutants from wastewater. Mater. Res. Bull. 147, 111630 (2022). https://doi.org/10.1016/j.materresbull.2021.111630

    Article  CAS  Google Scholar 

  54. M.A. Qamar, S. Shahid, M. Javed, S. Iqbal, M. Sher, A. Bahadur, M.M. Al-Anazy, A. Laref, D. Li, Designing of highly active g-C3N4/Ni–ZnO photocatalyst nanocomposite for the disinfection and degradation of the organic dye under sunlight radiations. Colloids Surf. A Physicochem. Eng. Asp. 614, 126176 (2021). https://doi.org/10.1016/j.colsurfa.2021.126176

    Article  CAS  Google Scholar 

  55. C. Blanco, M. Granda, A. Patricia, N.G. Asenjo, R. Santamarı, R. Mene, Correct use of the Langmuir–Hinshelwood equation for proving the absence of a synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Carbon 55, 62–69 (2013). https://doi.org/10.1016/j.carbon.2012.12.010

    Article  CAS  Google Scholar 

  56. F.A. Aisien, N.A. Amenaghawon, E.F. Ekpenisi, Photocatalytic decolourisation of industrial wastewater from a soft drink company. J. Eng. Appl. Sci. 9, 11–16 (2013)

    Google Scholar 

  57. Z. Ren, F. Chen, K. Wen, J. Lu, Enhanced photocatalytic activity for tetracyclines degradation with Ag modified g-C3N4 composite under visible light. J. Photochem. Photobiol. A Chem. 389, 112217 (2020). https://doi.org/10.1016/j.jphotochem.2019.112217

    Article  CAS  Google Scholar 

  58. V. Jayaraman, D. Sarkar, R. Rajendran, B. Palanivel, C. Ayappan, M. Chellamuthu, A. Mani, Synergistic effect of band edge potentials on BiFeO3/V2O5 composite: enhanced photo catalytic activity. J. Environ. Manage. 247, 104–114 (2019). https://doi.org/10.1016/j.jenvman.2019.06.041

    Article  CAS  Google Scholar 

  59. L. Lu, Z. Lv, Y. Si, M. Liu, S. Zhang, Recent progress on band and surface engineering of graphitic carbon nitride for artificial photosynthesis. Appl. Surf. Sci. 462, 693–712 (2018). https://doi.org/10.1016/j.apsusc.2018.08.131

    Article  CAS  Google Scholar 

  60. S. Prabhu, M. Pudukudy, S. Harish, M. Navaneethan, S. Sohila, K. Murugesan, R. Ramesh, Facile construction of djembe-like ZnO and its composite with g-C3N4 as a visible-light-driven heterojunction photocatalyst for the degradation of organic dyes. Mater. Sci. Semicond. Process. 106, 104754 (2020). https://doi.org/10.1016/j.mssp.2019.104754

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thankfully acknowledge the SRM Institute of science and technology (SRM IST), Department of Physics and Nanotechnology for the constant support to carry out this research work. Authors also gratefully acknowledge the Nanotechnology Research Center (NRC) for characterization facility.

Funding

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Contributions

RRC: conceptualization; investigation; methodology; software; writing-original draft. JR: methodology; data curation; software; GB: conceptualization; supervision; validation; visualization; writing-review & editing. SB: conceptualization; methodology; data curation; software; validation. VG: methodology; validation; data curation. JA: validation; data curation. MN: data curation; validation; resources. All authors read and approved the final manuscript.

Corresponding author

Correspondence to G. Bakiyaraj.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interest in this research manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrapal, R.R., Raveena, J., Bakiyaraj, G. et al. Enhancing the photocatalytic performance of g-C3N4 (GCN) via La–ZnO nanocomposite (Z-scheme mechanism) against toxic pharmaceutical pollutant. Journal of Materials Research 38, 3585–3601 (2023). https://doi.org/10.1557/s43578-023-01087-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01087-6

Keywords

Navigation