Skip to main content
Log in

Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

With the rapid development of industrial, large amounts of different inorganic and organic pollutants are released into the natural environments. The efficient elimination of environmental pollutants, i.e., photocatalytic degradation of persistent organic pollutants into nontoxic organic/inorganic chemicals, in-situ solidification or sorption-reduction of heavy metal ions, is crucial to protect the environment. Nanomaterials with large surface area, active sites and abundant functional groups could form strong surface complexes with different kinds of pollutants and thereby could efficiently eliminate the pollutants from the aqueous solutions. In this review, we mainly focused on the recent works about the synthesis of nanomaterials and their applications in the efficient elimination of different organic and inorganic pollutants from wastewater and discussed the interaction mechanism from batch experimental results, the advanced spectroscopy techniques and theoretical calculations. The adsorption and the photocatalytic reduction of organic pollutants and the sorption/reduction of heavy metal ions are generally considered as the main methods to decrease the concentration of pollutants in the natural environment. This review highlights a new way for the real applications of novel nanomaterials in environmental pollution management, especially for the undergraduate students to understand the recent works in the elimination of different kinds of inorganic and organic chemicals in the natural environmental pollution management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yao T, Cui T, Wu J, Chen Q, Lu S, Sun K. Preparation of hierarchical porous polypyrrole nanoclusters and their application for removal of Cr(VI) ions in aqueous solution. Polymer Chemistry, 2011, 2(12): 2893–2899

    CAS  Google Scholar 

  2. Wang X X, Li X, Wang J Q, Zhu H T. Recent advances in carbon nitride-based nanomaterials for the removal of heavy metal ions from aqueous solution. Journal of Inorganic Materials, 2020, 35(3): 260–270

    Google Scholar 

  3. Khan A, Wang J, Wang X, Li J, Chen Z, Alsaedi A, Hayat T, Chen Y, Wang X. The role of graphene oxide and graphene oxide-based nanomaterials in the removal of pharmaceuticals from aqueous media: A review. Environmental Science and Pollution Research International, 2017, 24(9): 7938–7958

    CAS  PubMed  Google Scholar 

  4. Wang X, Chen L, Wang L, Fan Q, Pan D, Li J, Chi F, Yu S, Xie Y, Xiao C, et al. Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Science China. Chemistry, 2019, 62(8): 933–967

    CAS  Google Scholar 

  5. Xu X, Huang Q, Mao Y, Wang X, Wang Y, Hu Q, Wang H, Wang X. Sensors for determination of uranium: A review. Trends in Analytical Chemistry, 2019, 118: 89–111

    Google Scholar 

  6. Zhu Y, Bai Z, Wang B, Zhai L, Luo W. Microfluidic synthesis of renewable biosorbent with highly comprehensive adsorption performance for copper(II). Frontiers of Chemical Science and Engineering, 2017, 11(2): 238–251

    CAS  Google Scholar 

  7. Wang H, Chen Z, Zhang S, Li Q, Wang W, Zhao G, Zhuang L, Hu B, Wang X. Visible-light-driven N2-g-C3N4 as a high stable and efficient photocatalyst for bisphenol A and Cr(VI) removal in binary systems. Catalysis Today, 2019, 335: 110–116

    CAS  Google Scholar 

  8. Zhang S, Gu P, Ma R, Luo C, Wen T, Zhao G, Cheng W, Wang X. Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: A critical review. Catalysis Today, 2019, 335: 65–77

    CAS  Google Scholar 

  9. Pang H, Wu Y, Wang X, Hu B, Wang X. Recent advances in composites of graphene and layered double hydroxides for water remediation: A review. Chemistry, an Asian Journal, 2019, 14(15): 2542–2552

    CAS  PubMed  Google Scholar 

  10. Peyravi M. Preparation of adsorptive nanoporous membrane using powder activated carbon: Isotherm and thermodynamic studies. Frontiers of Chemical Science and Engineering, 2019, doi: https://doi.org/10.1007/s11705-019-1800-9

    Google Scholar 

  11. Ouni L, Ramazani A, Fardood S T. An overview of carbon nanotubes role in heavy metals removal from wastewater. Frontiers of Chemical Science and Engineering, 2019, 13(2): 274–295

    CAS  Google Scholar 

  12. Yin L, Hu Y, Ma R, Wen T, Wang X, Hu B, Yu Z, Hayat T, Alsaedi A, Wang X. Smart construction of mesoporous carbon templated hierarchical Mg-Al and Ni-Al layered double hydroxides for remarkably enhanced U(VI) management. Chemical Engineering Journal, 2019, 359: 1550–1562

    CAS  Google Scholar 

  13. Gu P, Zhao C, Wen T, Ai Y, Zhang S, Chen W, Wang J, Alsaedi A, Hayat T, Wang X, Highly U. (VI) immobilization on polyvinyl pyrrolidine intercalated molybdenum disulfide: Experimental and computational studies. Chemical Engineering Journal, 2019, 359: 1563–1572

    CAS  Google Scholar 

  14. Romanchuk A, Slesarev A, Kalmykov S, Kosynkin D, Tour J. Graphene oxide for effective radionuclide removal. Physical Chemistry Chemical Physics, 2013, 15(7): 2321–2327

    CAS  PubMed  Google Scholar 

  15. Pang H, Diao Z, Wang X, Ma Y, Yu S, Zhu H, Chen Z, Hu B, Chen J, Wang X. Adsorptive and reductive removal of U(VI) by Dictyophora indusiate-derived biochar supported sulfide NZVI from wastewater. Chemical Engineering Journal, 2019, 366: 368- 377

    CAS  Google Scholar 

  16. Pakulski D, Czepa W, Witomska S, Aliprandi A, Pawluć P, Patroniak V, Ciesielski A, Samorì P. Graphene oxide-branched polyethylenimine foams for efficient removal of toxic cations from water. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(20): 9384–9390

    CAS  Google Scholar 

  17. Zhang Z, Dong Z, Wang X, Ying Y, Cao X, Wang Y, Hua R, Feng H, Chen J, Liu Y, et al. Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U(VI): Batch and fixed-bed column studies. Chemical Engineering Journal, 2019, 370: 1376- 1387

    CAS  Google Scholar 

  18. Liu X, Ma R, Wang X, Ma Y, Yang Y, Zhuang L, Zhang S, Jehan R, Chen J, Wang X. Graphene-based composites for efficient removal of heavy metal ions from aqueous solution: A review. Environmental Pollution, 2019, 252: 62–73

    CAS  PubMed  Google Scholar 

  19. Chandra V, Park J, Chun Y, Lee J, Hwang I, Kim K. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano, 2010, 4(7): 3979–3986

    CAS  PubMed  Google Scholar 

  20. Efome J, Rana D, Matsuura T, Lan C. Insight studies on metal-organic framework nanofibrous membrane adsorption and activation for heavy metal ions removal from aqueous solution. ACS Applied Materials & Interfaces, 2018, 10(22): 18619–18629

    CAS  Google Scholar 

  21. Yang S, Li Q, Chen L, Chen Z, Pu Z, Wang H, Yu S, Hu B, Chen J, Wang X. Ultrahigh sorption and reduction of Cr(VI) by two novel core-shell Fe3O4@MoS2 and MoS2@Fe3O4 composites. Journal of Hazardous Materials, 2019, 379: 120797

    CAS  PubMed  Google Scholar 

  22. Chen W, Lu Z, Xiao B, Gu P, Yao W, Xing J, Asiri A M, Alamry K A, Wang X, Wang S. Enhanced removal of lead ions from aqueous solution by iron oxide nanomaterials with cobalt and nickel doping. Journal of Cleaner Production, 2019, 211: 1250–1258

    CAS  Google Scholar 

  23. Yin L, Hu B, Zhuang L, Fu D, Li J, Hayat T, Alsaedi A, Wang X. Synthesis of flexible cross-linked cryptomelane-type manganese oxide nanowire membranes and their application for U(VI) and Eu (III) elimination from solutions. Chemical Engineering Journal, 2020, 381: 122744

    CAS  Google Scholar 

  24. Li J, Wang X, Zhao G, Chen C, Chai Z, Alsaedi A, Hayat T, Wang X. Metal-organic framework-based materials: Superior adsorbents for the capture of toxic and radioactive metal ions. Chemical Society Reviews, 2018, 47(7): 2322–2356

    CAS  PubMed  Google Scholar 

  25. Fan L, Luo C, Sun M, Qiu H. Synthesis of graphene oxide decorated with magnetic cyclodextrin for fast chromium removal. Journal of Materials Chemistry, 2012, 22(47): 24577–24583

    CAS  Google Scholar 

  26. Kassaee M, Motamedi E, Majdi M. Magnetic Fe3O4-graphene oxide/polystyrene: Fabrication and characterization of a promising nanocomposite. Chemical Engineering Journal, 2011, 172(1): 540–549

    CAS  Google Scholar 

  27. Gu P, Zhang S, Zhang C, Wang X, Khan A, Wen W, Hu B, Alsaedi A, Hayat T, Wang X. Two-dimensional MAX-derived titanate nanostructures for efficient removal of Pb(II). Dalton Transactions (Cambridge, England), 2019, 48(6): 2100–2107

    CAS  Google Scholar 

  28. Wang J, Ai Y, Gu P, Wang X, Li Q, Yu S, Chen Y, Yu Z, Wang X. Efficient elimination of Cr(VI) from aqueous solutions using sodium dodecyl sulfate intercalated molybdenum disulfide. Ecotoxicology and Environmental Safety, 2019, 175: 251–262

    CAS  PubMed  Google Scholar 

  29. Zhang S, Liu Y, Gu P, Ma R, Wen T, Zhao G, Li L, Ai Y, Hu C, Wang X. Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C3N4: Mechanism exploration from both experimental and DFT studies. Applied Catalysis B: Environmental, 2019, 248: 1–10

    CAS  Google Scholar 

  30. Pan B, Xing B S. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environmental Science & Technology, 2008, 42(24): 9005–9013

    CAS  Google Scholar 

  31. Rao G P, Lu C, Su F. Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Separation and Purification Technology, 2007, 58(1): 224–231

    CAS  Google Scholar 

  32. Zhao G, Jiang L, He Y, Li J, Dong H, Wang X, Hu W. Sulfonated graphene for persistent aromatic pollutant management. Advanced Materials, 2011, 23(34): 3959–3963

    CAS  PubMed  Google Scholar 

  33. Zhao G, Li J, Ren X, Chen C, Wang X. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environmental Science & Technology, 2011, 45(24): 10454–10462

    CAS  Google Scholar 

  34. Wang W, Wang X, Xing J, Gong Q, Wang H, Che Z, Ai Y, Wang X. Multi-heteroatom doped graphene-like carbon nanospheres with 3D inverse opal structure: A promising bisphenol-A remediation material. Environmental Science. Nano, 2019, 6(3): 809–819

    CAS  Google Scholar 

  35. Ai Y, Liu Y, Huo Y, Zhao C, Sun L, Han B, Bao X, Wang X. Insights into the adsorption mechanism and dynamic behavior of tetracycline antibiotics on reduced graphene oxide (RGO) and graphene oxide (GO) materials. Environmental Science. Nano, 2019, 6(11): 3336–3348

    CAS  Google Scholar 

  36. Wei D, Zhao C, Khan A, Sun L, Ji Y, Ai Y, Wang X. Sorption mechanism and dynamic behavior of graphene oxide as an effective adsorbent for the removal of chlorophenol based environmental-hormonies: A DFT and MD simulation study. Chemical Engineering Journal, 2019, 370: 121964

    Google Scholar 

  37. Wang J, Chen Z, Chen B. Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets. Environmental Science & Technology, 2014, 48(9): 4817–4825

    CAS  Google Scholar 

  38. Wang X, Yu S, Jin J, Wang H, Alharbi N S, Alsaedi A, Hayat T, Wang X. Application of graphene oxides and graphene oxide-based nanomaterials in radionuclide removal from aqueous solutions. Science Bulletin, 2016, 61(20): 1583–1593

    CAS  Google Scholar 

  39. Wang L, Yuan L, Chen K, Zhang Y, Deng Q, Du Y, Huang Q, Zheng L, Zhang J, Chai Z, Barsoum M W, Wang X, Shi W. Loading actinides in multi-layered structures for nuclear waste treatment: The first case study of uranium capture with vanadium carbide MXene. ACS Applied Materials & Interfaces, 2016, 8(25): 16396–16403

    CAS  Google Scholar 

  40. Wang L, Song H, Yuan L, Li Z, Zhang P, Gibson J, Zheng L, Wang H, Chai Z, Shi W. Effective removal of anionic Re(VII) by surface-modified Ti2CTx MXene nanocomposites: Implications for Tc(II) sequestration. Environmental Science & Technology, 2019, 53(7): 3739–3747

    CAS  Google Scholar 

  41. Li S, Wang L, Peng J, Zhai M, Shi W. Efficient thorium(IV) removal by two-dimensional Ti2CTx MXene from aqueous solution. Chemical Engineering Journal, 2019, 366: 192–199

    CAS  Google Scholar 

  42. Du Y, Wei L, Wang Y, Zhang X, Ye S. Efficient removal of Pb(II) by Ti3C2Tx powder modified with a silane coupling agent. Journal of Materials Science, 2019, 54(20): 13283–13297

    CAS  Google Scholar 

  43. Liu X, Chen G R, Lee D J, Kawamoto T, Tanaka H, Chen M L, Luo Y K. Adsorption removal of cesium from drinking waters: A mini review on use of biosorbents and other adsorbents. Bioresource Technology, 2014, 160: 142–149

    CAS  PubMed  Google Scholar 

  44. Aguila B, Banerjee D, Nie Z, Shin Y, Ma S, Thallapally P K. Selective removal of cesium and strontium using porous frameworks from high level nuclear waste. Chemical Communications (Cambridge), 2016, 52(35): 5940–5942

    CAS  Google Scholar 

  45. Sheng D, Zhu L, Xu C, Xiao C, Wang Y, Wang Y, Chen L, Diwu J, Chen J, Chai Z, Albrecht-Schmitt T E, Wang S. Efficient and selective uptake of TcO4‒by a cationic metal-organic framework material with open Ag+ sites. Environmental Science & Technology, 2017, 51(6): 3471–3479

    CAS  Google Scholar 

  46. Zhu L, Sheng D, Xu C, Dai X, Silver M A, Li J, Li P, Wang Y, Wang Y, Chen L, et al. Identifying the recognition site for selective trapping of Tc-99 in a hydrolytically stable and radiation resistant cationic metal-organic framework. Journal of the American Chemical Society, 2017, 139(42): 14873–14876

    CAS  PubMed  Google Scholar 

  47. Zhu L, Xiao C, Dai X, Li J, Gui D, Sheng D, Chen L, Zhou R, Chai Z, Albrecht-Schmitt T E, Wang S. Exceptional perrhenate/pertechnetate uptake and subsequent immobilization by a low-dimensional cationic coordination polymer: Overcoming the Hofmeister bias selectivity. Environmental Science & Technology Letters, 2017, 4(7): 316–322

    CAS  Google Scholar 

  48. Li Y, Yang Z, Wang Y, Bai Z, Zheng T, Dai X, Liu S, Gui D, Liu W, Chen M, et al. A mesoporous cationic thorium-organic framework that rapidly traps anionic persistent organic pollutants. Nature Communications, 2017, 8(1): 1354

    PubMed  PubMed Central  Google Scholar 

  49. Wang Y, Liu W, Bai Z, Zheng T, Silver M A, Li Y, Wang Y, Wang X, Diwu J, Chai Z, Wang S. Employing an unsaturated Th4+ site in a porous thorium-organic framework for Kr/Xe uptake and separation. Angewandte Chemie International Edition, 2018, 57(20): 5783–5787

    CAS  PubMed  Google Scholar 

  50. Lv Z, Fan Q, Xie Y, Chen Z, Alsaedi A, Hayat T, Wang X, Chen C. MOFs-derived magnetic chestnut shell-like hollow sphere NiO/ Ni@C composites and their removal performance for arsenic(V). Chemical Engineering Journal, 2019, 362: 413–421

    CAS  Google Scholar 

  51. Wang N C, Wang J, Zhang P, Wang W B, Sun C C, Xiao L, Chen C, Zhao B, Kong Q R, Zhu B K. Metal cation removal by P(VC-r-AA) copolymer ultrafiltration membranes. Frontiers of Chemical Science and Engineering, 2018, 12(2): 262–272

    CAS  Google Scholar 

  52. Efome J E, Rana D, Matsuura T, Lan C Q. Effects of operating parameters and coexisting ions on the efficiency of heavy metal ions removal by nano-fibrous metal-organic framework membrane filtration process. Science of the Total Environment, 2019, 674: 355–362

    CAS  PubMed  Google Scholar 

  53. Efome J E, Rana D, Matsuura T, Lan C Q. Experiment and modeling ofr flus and permeate concentration of heavy metal ion in adsorptive membrane filtration using a metal-organic framework incorporate nanofibrous membrane. Chemical Engineering Journal, 2018, 352: 737–744

    CAS  Google Scholar 

  54. Zhong X, Liang W, Hu B. Highly efficient enrichment mechanism of U(VI) and Eu(III) by covalent organic frameworks with intramolecular hydrogen-bonding from solutions. Applied Surface Science, 2020, 504: 144403

    CAS  Google Scholar 

  55. Bai C, Li J, Liu S, Yang X, Yang X, Tian Y, Cao K, Huang Y, Ma L, Li S. In situ preparation of nitrogen-rich and functional ultra-microporous carbonaceous COFs by “segregated” microwave irradiation. Microporous and Mesoporous Materials, 2014, 197: 148–155

    CAS  Google Scholar 

  56. Zhang M, Li Y, Bai C, Guo X, Han J, Hu S, Jiang H, Tan W, Li S, Ma L. Synthesis of microporous covalent phosphazene-based frameworks for selective separation of uranium in highly acidic media based on size-matching effect. ACS Applied Materials & Interfaces, 2018, 10(34): 28936–28947

    CAS  Google Scholar 

  57. Li B, Sun Q, Zhang Y, Abney C W, Aguila B, Lin W, Ma S. Functionalized porous aromatic framework for efficient uranium adsorption from aqueous solutions. ACS Applied Materials & Interfaces, 2017, 9(14): 12511–12517

    CAS  Google Scholar 

  58. Wei D, Li J, Chen Z, Liang J, Ma J, Wei M, Ai Y, Wang X. Understanding bisphenol-A adsorption in magnetic modified covalent organic frameworks: Experiments coupled with DFT calculations. Journal of Molecular Liquids, 2020, 301: 112431

    CAS  Google Scholar 

  59. Xu J, Xu X, Zhao H, Luo G. Microfluidic preparation of chitosan microspheres with enhanced adsorption performance of copper(II). Sensors and Actuators. B, Chemical, 2013, 183: 201–210

    CAS  Google Scholar 

  60. Wang B, Zhu Y, Bai Z, Luque R, Xuan J. Functionalized chitosan biosorbents with ultra-high performance, mechanical strength and tunable selectivity for heavy metals in wastewater treatment. Chemical Engineering Journal, 2017, 325: 350–359

    CAS  Google Scholar 

  61. Ngah W S W, Teong L C, Hanafiah M A K M. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 2011, 83(4): 1446–1456

    Google Scholar 

  62. Wang L, Song H, Yuan L, Li Z, Zhang Y, Gibson J, Zheng L, Chai Z, Shi W. Efficient U(VI) reduction and sequestration by Ti2CTx MXene. Environmental Science & Technology, 2018, 52(18): 10748–10756

    CAS  Google Scholar 

  63. Wang H, Guo H, Zhang N, Chen Z, Hu B, Wang X. Enhanced Photoreduction of U(VI) on C3N4 by Cr(VI) and Bisphenol A: ESR, XPS and EXAFS investigation. Environmental Science & Technology, 2019, 53(11): 6454–6461

    CAS  Google Scholar 

  64. Yu S, Wang S, Liu Y, Chen Z, Wu Y, Liu Y, Pang H, Song G, Chen J, Wang X. Efficient removal of uranium(VI) by layered double hydroxides supported nanoscale zero-valent iron: A combined experimental and spectroscopic studies. Chemical Engineering Journal, 2019, 365: 51–59

    CAS  Google Scholar 

  65. Zhu F, Li L, Ren W, Deng X, Liu T. Effect of pH, temperature, humic acid and coexisting anions on reduction of Cr(VI) in the soil leachate by nZVI/Ni bimetal material. Environmental Pollution, 2017, 227: 444–450

    CAS  PubMed  Google Scholar 

  66. Yang S Y, Li Q, Chen Z S, Hu B W, Wang H H, Wang X K. Synergistic removal and reduction of U(VI) and Cr(VI) by Fe3S4 micro-crystal. Chemical Engineering Journal, 2020, 385: 123909

    CAS  Google Scholar 

  67. Sheng G, Alsaedi A, Shammakh W, Monaquel S, Sheng J, Wang X, Li H, Huang Y. Enhanced sequestration of selenite in water by nanoscale zero valent iron immobilization on carbon nanotubes by a combined batch, XPS and XAFS investigation. Carbon, 2016, 99: 123–130

    CAS  Google Scholar 

  68. Pang H, Wu Y, Huang S, Li S, Wang X, Yu S, Chen Z, Song G, Ding C, Wang X. Macroscopic and microscopic investigation of uranium elimination by Ca-Mg-Al-layered double hydroxide supported nanoscale zero valent iron. Inorganic Chemistry Frontiers, 2018, 5(10): 2657–2665

    CAS  Google Scholar 

  69. Wang J Q, Pang H W, Tang H, Yu S J, Zhu H T, Wang X X. Recent advances in carbon nitride-based nanomaterials for the removal of heavy metal ions and radionuclides from aqueous solution. Journal of Inorganic Materials, 2020, 35(3): 373–380

    Google Scholar 

  70. Shu H, Chang M, Chen C, Chen P. Using resin supported nano zero-valent iron particles for decoloration of acid blue 113 azo dye solution. Journal of Hazardous Materials, 2010, 184(1-3): 499–505

    CAS  PubMed  Google Scholar 

  71. Li J H, Yang L X, Li J Q, Yin W H, Tao Y, Wu H Q, Luo F. Anchoring nZVI on metal organic framework for removal of uranium(VI) from aqueous solution. Journal of Solid State Chemistry, 2019, 269: 16–23

    CAS  Google Scholar 

  72. Guo Z, Zhou J, Zhu L, Sun Z. MXene: A promising photocatalyst for water splitting. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(29): 11446–11452

    CAS  Google Scholar 

  73. Iqbal M A, Tariq A, Zaheer A, Gul S, Ali S I, Iqbal M Z, Akinwande D, Rizwan S. Ti3C2-MXene/Bismuth ferrite nanohybrids for efficient degradation of organic dyes and colorless pollutants. ACS Omega, 2019, 4(24): 20530–20539

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Yuan X, Zhou C, Jing Q, Tang Q, Mu Y, Du A K. Facile synthesis of g-C3N4 nanosheets/ZnO nanocomposites with enhanced photocata-lytic activity in reduction of aqueous chromium(VI) under visible light. Nanomaterials (Basel, Switzerland), 2016, 6(9): 173–185

    Google Scholar 

  75. Raziq F, Qu Y, Humayun M, Zada A, Yu H, Jing L. Synthesis of SnO2/B-P codoped g-C3N4 nanocomposites as efficient cocatalyst-free visible-light photocatalysts for CO2 conversion and pollutant degradation. Applied Catalysis B: Environmental, 2017, 201: 486- 494

    CAS  Google Scholar 

  76. Wang Y, Wang H, Chen F, Cao F, Zhao X, Meng S, Cui Y. Facile synthesis of oxygen doped carbon nitride hollow microsphere for photocatalysis. Applied Catalysis B: Environmental, 2017, 206: 417–425

    CAS  Google Scholar 

  77. Dutta D P, Dagar D. Efficient selective sorption of cationic organic pollutant from water and its photocatalytic degradation by AlVO4/g-C3N4 nanocomposite. Journal of Nanoscience and Nanotechnol-ogy, 2020, 20(4): 2179–2194

    CAS  Google Scholar 

  78. Du X Y, Bai X, Xu L, Yang L, Jin P K. Visible-light activation of persulfate by TiO2/g-C3N4 photocatalyst toward efficient degradation of micropollutants. Chemical Engineering Journal, 2020, 384: 123245

    CAS  Google Scholar 

  79. Nguyen T B, Huang C P, Doong R A, Chen C W, Dong C D. Visible-light photodegradation of sulfamethoxazole (SMX) over Ag-P-codoped g-C3N4 (Ag-P@UCN) photocatalyst in water. Chemical Engineering Journal, 2020, 384: 123383

    CAS  Google Scholar 

  80. Sridharan K, Jang E, Park T J. Novel visible light active graphitic C3N4-TiO2 composite photocatalyst: Synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants. Applied Catalysis B: Environmental, 2013, 142-143: 718–728

    CAS  Google Scholar 

  81. Wang H, Chen Z, Zhang S, Li Q, Wang W, Zhao G, Zhuang L, Hu B, Wang X. Visible-light-driven N2-g-C3N4 as a high stable and efficient photocatalyst for bisphenol A and Cr(VI) removal in binary systems. Catalysis Today, 2019, 335: 110–116

    CAS  Google Scholar 

  82. Zhang S, Song S, Gu P, Ma R, Wei D, Zhao G, Wen T, Jehan R, Hu B, Wang X. Visible-light-driven activation of persulfate over cyano and hydroxyl groups co-modified mesoporous g-C3N4 for boosting bisphenol A degradation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(10): 5552–5560

    CAS  Google Scholar 

  83. Wang L, Tao W Q, Yuan L Y, Liu Z R, Huang Q, Chai Z F, Gibson J K, Shi W Q. Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chemical Communications (Cambridge), 2017, 53(89): 12084–12087

    CAS  Google Scholar 

  84. Fan M, Wang L, Pei C X, Shi W Q. Alkalization intercalation of MXene for electrochemical detection of uranyl ion. Journal of Inorganic Materials, 2019, 34(1): 85–90

    Google Scholar 

  85. Zhao C F, Jin J R, Huo Y Z, Sun L, Ai Y J. Adsorpiton of phenolic organic pollutants on graphene oxide: A Molecular dynamics study. Journal of Inorganic Materials, 2020, 35(3): 277–283

    Google Scholar 

Download references

Acknowledgments

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant No. KEP-19-130-40. The National Key Research and Development Program of China (Grant No. 2018YFC1900105) was acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baowei Hu or Xiangke Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharbi, N.S., Hu, B., Hayat, T. et al. Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials. Front. Chem. Sci. Eng. 14, 1124–1135 (2020). https://doi.org/10.1007/s11705-020-1923-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1923-z

Keywords

Navigation