Skip to main content

Advertisement

Log in

Drug eluting titanium implants for localised drug delivery

  • Review
  • FOCUS ISSUE: Advances in Titanium Bio-Implants
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Titanium and its alloys are considered as one of the mainstream materials for fabricating orthopaedic and dental implants. In spite of their satisfactory success rate, implant failure is reported in terms of poor osseointegration, bone resorption and postsurgical infections. Localised drug delivery through implant has gained immense interest due to its flexibility in delivering different drugs directly to target site and addressing dose-related adverse effects. Surface modification through coating or adsorption is used to fabricate drug eluting titanium implants. Currently two approaches are in use. First involves modification of implant surface or pores with drug loaded carrier (polymers, ceramics, or composite). Other is to load drug to the implant material itself without drug carrier. Controlled drug release and mechanical and physical stability of coated or adsorbed materials are the major researched areas. Review discusses the current advancements in both the approaches for developing multifunctional titanium implants for localised drug delivery.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. D. Culliford et al., Future projections of total hip and knee arthroplasty in the UK: results from the UK Clinical Practice Research Datalink. Osteoarthr. Cartil. 23(4), 594–600 (2015)

    Article  CAS  Google Scholar 

  2. S. Kurtz et al., Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. JBJS 89(4), 780–785 (2007)

    Article  Google Scholar 

  3. A. Ailianou et al., Multiplicity of morphologies in poly (l-lactide) bioresorbable vascular scaffolds. Proc. Natl. Acad. Sci. USA 113(42), 11670–11675 (2016)

    Article  CAS  Google Scholar 

  4. S. Duan et al., Enhanced osteogenic differentiation of mesenchymal stem cells on poly (l-lactide) nanofibrous scaffolds containing carbon nanomaterials. J. Biomed. Mater. Res. Part A 103(4), 1424–1435 (2015)

    Article  Google Scholar 

  5. T. Murakami et al., Establishment of novel meniscal scaffold structures using polyglycolic and poly-l-lactic acids. J. Biomater. Appl. 32(2), 150–161 (2017)

    Article  CAS  Google Scholar 

  6. V.V. Mutsenko et al., Novel chitin scaffolds derived from marine sponge Ianthella basta for tissue engineering approaches based on human mesenchymal stromal cells: biocompatibility and cryopreservation. Int. J. Biol. Macromol. 104, 1955–1965 (2017)

    Article  CAS  Google Scholar 

  7. S. Toosi, Bone healing of critical size calvarial defects in rabbits with collagen sponge reinforced poly glycolic acid. Cytotherapy 20(5), S83 (2018)

    Article  Google Scholar 

  8. J.P. Zambon et al., Histological changes induced by Polyglycolic-Acid (PGA) scaffolds seeded with autologous adipose or muscle-derived stem cells when implanted on rabbit bladder. Organogenesis 10(2), 278–288 (2014)

    Article  Google Scholar 

  9. S.C. Cox et al., 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater. Sci. Eng. C 47, 237–247 (2015)

    Article  CAS  Google Scholar 

  10. F. Gervaso et al., Mechanical stability of highly porous hydroxyapatite scaffolds during different stages of in vitro studies. Mater. Lett. 185, 239–242 (2016)

    Article  CAS  Google Scholar 

  11. K. Oka et al., Corrective osteotomy using customized hydroxyapatite implants prepared by preoperative computer simulation. Int. J. Med. Robot. Comput. Assist. Surg. 6(2), 186–193 (2010)

    Article  Google Scholar 

  12. S. Spalthoff et al., Heterotopic bone formation in the musculus latissimus dorsi of sheep using β-tricalcium phosphate scaffolds: evaluation of an extended prefabrication time on bone formation and matrix degeneration. Int. J. Oral Maxillofac. Surg. 44(6), 791–797 (2015)

    Article  CAS  Google Scholar 

  13. S. Tarafder, S. Bose, Polycaprolactone-coated 3D printed tricalcium phosphate scaffolds for bone tissue engineering: in vitro alendronate release behavior and local delivery effect on in vivo osteogenesis. ACS Appl. Mater. Interfaces 6(13), 9955–9965 (2014)

    Article  CAS  Google Scholar 

  14. H. Yoshikawa, A. Myoui, Bone tissue engineering with porous hydroxyapatite ceramics. J. Artif. Organs 8(3), 131–136 (2005)

    Article  CAS  Google Scholar 

  15. C. Kascholke et al., Biodegradable and adjustable sol-gel glass based hybrid scaffolds from multi-armed oligomeric building blocks. Acta Biomater. 63, 336–349 (2017)

    Article  CAS  Google Scholar 

  16. M. Asgari et al., Biodegradable metallic wires in dental and orthopedic applications: a review. Metals 8(4), 212 (2018)

    Article  Google Scholar 

  17. L.C. Campanelli, A review on the recent advances concerning the fatigue performance of titanium alloys for orthopedic applications. J. Mater. Res. 36(1), 151–165 (2021)

    Article  CAS  Google Scholar 

  18. C. Wen et al., Novel titanium foam for bone tissue engineering. J. Mater. Res. 17(10), 2633–2639 (2002)

    Article  CAS  Google Scholar 

  19. Z. Wang et al., Analysis of factors influencing bone ingrowth into three-dimensional printed porous metal scaffolds: a review. J. Alloy Compd. 717, 271–285 (2017)

    Article  CAS  Google Scholar 

  20. X. Wang et al., Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83, 127–141 (2016)

    Article  CAS  Google Scholar 

  21. S. Kurtz et al., Prevalence of primary and revision total hip and knee arthroplasty in the United States from 1990 through 2002. JBJS 87(7), 1487–1497 (2005)

    Google Scholar 

  22. Y.-S. Park et al., Modified titanium implant as a gateway to the human body: the implant mediated drug delivery system. BioMed Res. Int. (2014)

  23. D. Apostu et al., Systemic drugs that influence titanium implant osseointegration. Drug Metab. Rev. 49(1), 92–104 (2017)

    Article  CAS  Google Scholar 

  24. X. Han et al., Local and targeted delivery of immune checkpoint blockade therapeutics. Acc. Chem. Res. 53(11), 2521–2533 (2020)

    Article  CAS  Google Scholar 

  25. K.A.S. Al-Japairai et al., Current trends in polymer microneedle for transdermal drug delivery. Int. J. Pharm. 587, 119673 (2020)

    Article  Google Scholar 

  26. J.C. Quarterman, S.M. Geary, A.K. Salem, Evolution of drug-eluting biomedical implants for sustained drug delivery. Eur. J. Pharm. Biopharm. 159, 21–35 (2021)

    Article  CAS  Google Scholar 

  27. Q. Wang et al., TiO2 nanotube platforms for smart drug delivery: a review. Int. J. Nanomed. 11, 4819 (2016)

    Article  CAS  Google Scholar 

  28. J. Gallo, M. Holinka, C.S. Moucha, Antibacterial surface treatment for orthopaedic implants. Int. J. Mol. Sci. 15(8), 13849–13880 (2014)

    Article  CAS  Google Scholar 

  29. J. Zhou et al., Incidence of surgical site infection after spine surgery: a systematic review and meta-analysis. Spine 45(3), 208–216 (2020)

    Article  Google Scholar 

  30. K. Chae et al., Antibacterial infection and immune-evasive coating for orthopedic implants. Sci. Adv. 6(44), eabb0025 (2020)

    Article  CAS  Google Scholar 

  31. C. Hu et al., Bioinspired surface modification of orthopedic implants for bone tissue engineering. Biomaterials 219, 119366 (2019)

    Article  CAS  Google Scholar 

  32. A.J. Rao et al., Revision joint replacement, wear particles, and macrophage polarization. Acta Biomater. 8(7), 2815–2823 (2012)

    Article  CAS  Google Scholar 

  33. A.C.D.O. Gonzalez et al., Wound healing—a literature review. An. Bras. Dermatol. 91, 614–620 (2016)

    Article  Google Scholar 

  34. S.A. Eming, T. Krieg, J.M. Davidson, Inflammation in wound repair: molecular and cellular mechanisms. J. Investig. Dermatol. 127(3), 514–525 (2007)

    Article  CAS  Google Scholar 

  35. O. Gherasim et al., Bioactive ibuprofen-loaded PLGA coatings for multifunctional surface modification of medical devices. Polymers 13(9), 1413 (2021)

    Article  CAS  Google Scholar 

  36. N. Sarkar, S. Bose, Controlled delivery of curcumin and vitamin K2 from hydroxyapatite-coated titanium implant for enhanced in vitro chemoprevention, osteogenesis, and in vivo osseointegration. ACS Appl. Mater. Interfaces 12(12), 13644–13656 (2020)

    Article  CAS  Google Scholar 

  37. T. Albrektsson, A. Wennerberg, On osseointegration in relation to implant surfaces. Clin. Implant Dent. Relat. Res. 21, 4–7 (2019)

    Article  Google Scholar 

  38. J.W.Y. Lee, M.L. Bance, Physiology of osseointegration. Otolaryngol. Clin. N. Am. 52(2), 231–242 (2019)

    Article  Google Scholar 

  39. R. Hunter et al., Angiogenesis in wound healing following pharmacological and toxicological exposures. Curr. Pathobiol. Rep. 8(4), 99–109 (2020)

    Article  Google Scholar 

  40. M. Xue, C.J. Jackson, Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv. Wound Care 4(3), 119–136 (2015)

    Article  Google Scholar 

  41. T.N. Vo, F.K. Kasper, A.G. Mikos, Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv. Drug Deliv. Rev. 64(12), 1292–1309 (2012)

    Article  CAS  Google Scholar 

  42. T. Soldatos et al., Imaging differentiation of pathologic fractures caused by primary and secondary bone tumors. Eur. J. Radiol. 82(1), e36–e42 (2013)

    Article  Google Scholar 

  43. N. Raje et al., Denosumab versus zoledronic acid in bone disease treatment of newly diagnosed multiple myeloma: an international, double-blind, double-dummy, randomised, controlled, phase 3 study. Lancet Oncol. 19(3), 370–381 (2018)

    Article  CAS  Google Scholar 

  44. W. Jing et al., Polymer-ceramic fiber nanocomposite coatings on titanium metal implant devices for diseased bone tissue regeneration. J. Sci. 6(3), 399–406 (2021)

    Google Scholar 

  45. Y.-L. Lai, Y.-M. Cheng, S.-K. Yen, Doxorubicin—chitosan—hydroxyapatite composite coatings on titanium alloy for localized cancer therapy. Mater. Sci. Eng. C 104, 109953 (2019)

    Article  CAS  Google Scholar 

  46. S. Radin et al., Calcium phosphate ceramic coatings as carriers of vancomycin. Biomaterials 18(11), 777–782 (1997)

    Article  CAS  Google Scholar 

  47. B. Peter et al., Calcium phosphate drug delivery system: influence of local zoledronate release on bone implant osteointegration. Bone 36(1), 52–60 (2005)

    Article  CAS  Google Scholar 

  48. M. Khorasanian et al., Microstructure and wear resistance of oxide coatings on Ti–6Al–4V produced by plasma electrolytic oxidation in an inexpensive electrolyte. Surf. Coat. Technol. 206(6), 1495–1502 (2011)

    Article  CAS  Google Scholar 

  49. H. Habazaki et al., Formation and characterization of wear-resistant PEO coatings formed on β-titanium alloy at different electrolyte temperatures. Appl. Surf. Sci. 259, 711–718 (2012)

    Article  CAS  Google Scholar 

  50. S. Kajdič et al., Electrospun nanofibers for customized drug-delivery systems. J. Drug Deliv. Sci. Technol. 51, 672–681 (2019)

    Article  Google Scholar 

  51. B.S. Verza et al., A long-term controlled drug-delivery with anionic beta cyclodextrin complex in layer-by-layer coating for percutaneous implants devices. Carbohydr. Polym. 257, 117604 (2021)

    Article  CAS  Google Scholar 

  52. E.D. de Avila et al., Anti-bacterial efficacy via drug-delivery system from layer-by-layer coating for percutaneous dental implant components. Appl. Surf. Sci. 488, 194–204 (2019)

    Article  Google Scholar 

  53. K. Yang et al., Gentamicin loaded polyelectrolyte multilayers and strontium doped hydroxyapatite composite coating on Ti-6Al-4V alloy: antibacterial ability and biocompatibility. Mater. Technol. 1–8 (2021)

  54. L.-J. He et al., Layer-by-layer assembly of gentamicin-based antibacterial multilayers on Ti alloy. Mater. Lett. 261, 127001 (2020)

    Article  CAS  Google Scholar 

  55. J. Ballarre et al., Versatile bioactive and antibacterial coating system based on silica, gentamicin, and chitosan: improving early stage performance of titanium implants. Surf. Coat. Technol. 381, 125138 (2020)

    Article  CAS  Google Scholar 

  56. V. Ständert et al., Antibiotic-loaded amphora-shaped pores on a titanium implant surface enhance osteointegration and prevent infections. Bioactive Mater. 6(8), 2331–2345 (2021)

    Article  Google Scholar 

  57. M.B. Thomas et al., In situ potentiostatic deposition of calcium phosphate with gentamicin-loaded chitosan nanoparticles on titanium alloy surfaces. Electrochim. Acta 222, 355–360 (2016)

    Article  CAS  Google Scholar 

  58. A. Alenezi et al., Development of a photon induced drug-delivery implant coating. Mater. Sci. Eng. C 98, 619–627 (2019)

    Article  CAS  Google Scholar 

  59. Q. Wei, A. Wei, Functional nanofibers for drug delivery applications, in Functional Nanofibers and their Applications, (Elsevier, Amsterdam, 2012), pp. 153–170.

  60. A.S. Kranthi Kiran et al., Drug loaded electrospun polymer/ceramic composite nanofibrous coatings on titanium for implant related infections. Ceram. Int. 45(15), 18710–18720 (2019)

    Article  CAS  Google Scholar 

  61. C.-K. Sun et al., Transglutaminase cross-linked gelatin-alginate-antibacterial hydrogel as the drug delivery-coatings for implant-related infections. Polymers 13(3), 414 (2021)

    Article  CAS  Google Scholar 

  62. Z. Jing et al., Practical strategy to construct anti-osteosarcoma bone substitutes by loading cisplatin into 3D-printed titanium alloy implants using a thermosensitive hydrogel. Bioactive Mater. 6(12), 4542–4557 (2021)

    Article  CAS  Google Scholar 

  63. L. Zhang et al., Antimicrobial peptide-loaded pectolite nanorods for enhancing wound-healing and biocidal activity of titanium. ACS Appl. Mater. Interfaces 13(24), 28764–28773 (2021)

    Article  CAS  Google Scholar 

  64. H.A. Rather, D. Jhala, R. Vasita, Dual functional approaches for osteogenesis coupled angiogenesis in bone tissue engineering. Mater. Sci. Eng. C 103, 109761 (2019)

    Article  CAS  Google Scholar 

  65. J. Lv et al., Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti 6 Al 4 V scaffolds incorporating growth factor-doped fibrin glue. Biomed. Mater. 10(3), 035013 (2015)

    Article  Google Scholar 

  66. A. Kazek-Kęsik et al., PLGA-amoxicillin-loaded layer formed on anodized Ti alloy as a hybrid material for dental implant applications. Mater. Sci. Eng. C 94, 998–1008 (2019)

    Article  Google Scholar 

  67. K. Rajesh et al., surface modified metallic orthopedic implant for sustained drug release and osteocompatibility. ACS Appl. Bio Mater. 2(10), 4181–4192 (2019)

    Article  CAS  Google Scholar 

  68. A. Humayun, Y. Luo, D.K. Mills, Electrophoretic deposition of gentamicin-loaded znhnts-chitosan on titanium. Coatings 10(10), 944 (2020)

    Article  CAS  Google Scholar 

  69. S.-T. Chen et al., Drug-release dynamics and antibacterial activities of chitosan/cefazolin coatings on Ti implants. Prog. Org. Coat. 159, 106385 (2021)

    Article  CAS  Google Scholar 

  70. D. Ke et al., Compositionally graded doped hydroxyapatite coating on titanium using laser and plasma spray deposition for bone implants. Acta Biomater. 84, 414–423 (2019)

    Article  CAS  Google Scholar 

  71. S. Tarafder, K. Nansen, S. Bose, Lovastatin release from polycaprolactone coated β-tricalcium phosphate: effects of pH, concentration and drug–polymer interactions. Mater. Sci. Eng. C 33(6), 3121–3128 (2013)

    Article  CAS  Google Scholar 

  72. S. Bose et al., Effects of polycaprolactone on alendronate drug release from Mg-doped hydroxyapatite coating on titanium. Mater. Sci. Eng. C 88, 166–171 (2018)

    Article  CAS  Google Scholar 

  73. X. Shi et al., Enhancing alendronate release from a novel PLGA/hydroxyapatite microspheric system for bone repairing applications. Pharm. Res. 26(2), 422–430 (2009)

    Article  CAS  Google Scholar 

  74. H.Y. Huang et al., Effect of hydroxyapatite formation on titanium surface with bone morphogenetic protein-2 loading through electrochemical deposition on MG-63 cells. Materials 11(10), 1897 (2018)

    Article  Google Scholar 

  75. X. Zhang et al., Novel ternary vancomycin/strontium doped hydroxyapatite/graphene oxide bioactive composite coatings electrodeposited on titanium substrate for orthopedic applications. Colloids Surf. A 603, 125223 (2020)

    Article  CAS  Google Scholar 

  76. M. Sumathra et al., In vivo assessment of a hydroxyapatite/κ-carrageenan–maleic anhydride–casein/doxorubicin composite-coated titanium bone implant. ACS Biomater. Sci. Eng. 6(3), 1650–1662 (2020)

    Article  CAS  Google Scholar 

  77. H.-W. Liu et al., Combined antibacterial and osteogenic in situ effects of a bifunctional titanium alloy with nanoscale hydroxyapatite coating. Artif. Cells Nanomed. Biotechnol. 46(sup3), S460–S470 (2018)

    Article  CAS  Google Scholar 

  78. E. Vidal et al., Single-step pulsed electrodeposition of calcium phosphate coatings on titanium for drug delivery. Surf. Coat. Technol. 358, 266–275 (2019)

    Article  CAS  Google Scholar 

  79. N. Sarkar, H. Morton, S. Bose, Effects of vitamin C on osteoblast proliferation and osteosarcoma inhibition using plasma coated hydroxyapatite on titanium implants. Surf. Coat. Technol. 394, 125793 (2020)

    Article  CAS  Google Scholar 

  80. S. Prabakaran, M. Rajan, The osteogenic and bacterial inhibition potential of natural and synthetic compound loaded metal–ceramic composite coated titanium implant for orthopedic applications. New J. Chem. 45(35), 15996–16010 (2021)

    Article  CAS  Google Scholar 

  81. Y. Chen et al., Manufacturing of biocompatible porous titanium scaffolds using a novel spherical sugar pellet space holder. Mater. Lett. 195, 92–95 (2017)

    Article  CAS  Google Scholar 

  82. Y. Chen et al., Manufacturing of graded titanium scaffolds using a novel space holder technique. Bioactive Mater. 2(4), 248–252 (2017)

    Article  Google Scholar 

  83. Y. Chen et al., Mechanical properties and biocompatibility of porous titanium scaffolds for bone tissue engineering. J. Mech. Behav. Biomed. Mater. 75, 169–174 (2017)

    Article  CAS  Google Scholar 

  84. M. Rana et al., Design and manufacturing of biomimetic porous metal implants. J. Mater. Res. 36(19), 3952–3962 (2021)

    Article  CAS  Google Scholar 

  85. A.B. Stoian, I. Demetrescu, D. Ionita, Nanotubes and nano pores with chitosan construct on TiZr serving as drug reservoir. Colloids Surf. B 185, 110535 (2020)

    Article  CAS  Google Scholar 

  86. A.B.W. Alécio et al., Doxycycline release of dental implants with nanotube surface, coated with poly lactic-co-glycolic acid for extended pH-controlled drug delivery. J. Oral Implantol. 45(4), 267–273 (2019)

    Article  Google Scholar 

  87. P. He et al., 1α, 25-Dihydroxyvitamin D3-loaded hierarchical titanium scaffold enhanced early osseointegration. Mater. Sci. Eng. C 109, 110551 (2020)

    Article  CAS  Google Scholar 

  88. B. Onat et al., Bacterial anti-adhesive and pH-induced antibacterial agent releasing ultra-thin films of zwitterionic copolymer micelles. Acta Biomater. 40, 293–309 (2016)

    Article  CAS  Google Scholar 

  89. T. Hu et al., Magnesium enhances the chondrogenic differentiation of mesenchymal stem cells by inhibiting activated macrophage-induced inflammation. Sci. Rep. 8(1), 1–13 (2018)

    Google Scholar 

  90. D.A. Robinson et al., In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Acta Biomater. 6(5), 1869–1877 (2010)

    Article  CAS  Google Scholar 

  91. X. Shen et al., Fabrication of magnesium/zinc-metal organic framework on titanium implants to inhibit bacterial infection and promote bone regeneration. Biomaterials 212, 1–16 (2019)

    Article  CAS  Google Scholar 

  92. F.A.-Z. Abdel-Rahman et al., Exploitation of 3D-microporous architecture surface of titanium implant as local drug delivery system (2016)

  93. W.-T. Kim et al., Porous TiO2 nanotube arrays for drug loading and their elution sensing. J. Nanosci. Nanotechnol. 19(3), 1743–1748 (2019)

    Article  CAS  Google Scholar 

  94. L. Draghi et al., Gentamicin-loaded TiO2 nanotubes as improved antimicrobial surfaces for orthopedic implants. Front. Mater. 7, 233 (2020)

    Article  Google Scholar 

  95. A. Goudarzi, S.K. Sadrnezhaad, N. Johari, The prominent role of fully-controlled surface co-modification procedure using titanium nanotubes and silk fibroin nanofibers in the performance enhancement of Ti6Al4V implants. Surf. Coat. Technol. 412, 127001 (2021)

    Article  CAS  Google Scholar 

  96. Y.-G. Kim et al., Effects of ibuprofen-loaded TiO2 nanotube dental implants in alloxan-induced diabetic rabbits. J. Periodontal Implant Sci. 51(5), 352–363 (2021)

    Article  CAS  Google Scholar 

  97. B. Yan et al., Constructing fluorine-doped Zr-MOF films on titanium for antibacteria, anti-inflammation, and osteogenesis. Mater. Sci. Eng. C 112699 (2022)

  98. Ł Rumian et al., Ceramic scaffolds enriched with gentamicin loaded poly(lactide-co-glycolide) microparticles for prevention and treatment of bone tissue infections. Mater. Sci. Eng. C 69, 856–864 (2016)

    Article  CAS  Google Scholar 

  99. M. Hîrjău et al., Evaluation of experimental multi-particulate polymer-coated drug delivery systems with meloxicam. Coatings 10(5), 490 (2020)

    Article  Google Scholar 

  100. L.W. Kleiner, J.C. Wright, Y. Wang, Evolution of implantable and insertable drug delivery systems. J. Control. Release 181, 1–10 (2014)

    Article  CAS  Google Scholar 

  101. R.A. Siegel, M.J. Rathbone, Overview of controlled release mechanisms, in Fundamentals and Applications of Controlled Release Drug Delivery. ed. by J. Siepmann, R.A. Siegel, M.J. Rathbone (Springer, Boston, 2012), pp. 19–43

    Chapter  Google Scholar 

  102. S.A. Stewart et al., Implantable polymeric drug delivery devices: classification, manufacture, materials, and clinical applications. Polymers 10(12), 1379 (2018)

    Article  Google Scholar 

  103. S. Lyu, D. Untereker, Degradability of polymers for implantable biomedical devices. Int. J. Mol. Sci. 10(9), 4033–4065 (2009)

    Article  CAS  Google Scholar 

  104. B.D. Ulery, L.S. Nair, C.T. Laurencin, Biomedical applications of biodegradable polymers. J. Polym. Sci. Part B 49(12), 832–864 (2011)

    Article  CAS  Google Scholar 

  105. A. Dash, G. Cudworth II., Therapeutic applications of implantable drug delivery systems. J. Pharmacol. Toxicol. Methods 40(1), 1–12 (1998)

    Article  CAS  Google Scholar 

  106. S.Y. Wong et al., Dual functional polyelectrolyte multilayer coatings for implants: permanent microbicidal base with controlled release of therapeutic agents. J. Am. Chem. Soc. 132(50), 17840–17848 (2010)

    Article  CAS  Google Scholar 

  107. F. Hilbrig, R. Freitag, Hydroxyapatite in bioprocessing. Biopharm. Prod. Technol. 1, 283–331 (2012)

    CAS  Google Scholar 

  108. Y. Zhu, S. Kaskel, Comparison of the in vitro bioactivity and drug release property of mesoporous bioactive glasses (MBGs) and bioactive glasses (BGs) scaffolds. Microporous Mesoporous Mater. 118(1–3), 176–182 (2009)

    Article  CAS  Google Scholar 

  109. S. Sun et al., PLGA film/Titanium nanotubues as a sustained growth factor releasing system for dental implants. J. Mater. Sci. 29(9), 141 (2018)

    Google Scholar 

Download references

Acknowledgments

Dr. Amoljit Singh Gill acknowledge the financial assistance provided by Science and Engineering Research Board, Department of Science and Technology, Government of India under the TARE Scheme (TAR/2019/000225).

Funding

Financial assistance provided by Science and Engineering Research Board, Department of Science and Technology, Government of India under the TARE Scheme (TAR/2019/000225).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amoljit Singh Gill.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Sarabjeet Singh Sidhu is a guest editor of this issue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Gill, A.S., Deol, P.K. et al. Drug eluting titanium implants for localised drug delivery. Journal of Materials Research 37, 2491–2511 (2022). https://doi.org/10.1557/s43578-022-00609-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00609-y

Keywords

Navigation