Skip to main content

Advertisement

Log in

Bone tissue engineering with porous hydroxyapatite ceramics

  • REVIEW
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

The main principle of bone tissue engineering strategy is to use an osteoconductive porous scaffold in combination with osteoinductive molecules or osteogenic cells. The requirements for a scaffold in bone regeneration are: (1) biocompatibility, (2) osteoconductivity, (3) interconnected porous structure, (4) appropriate mechanical strength, and (5) biodegradability. We recently developed a fully interconnected porous hydroxyapatite (IP-CHA) by adopting the “form-gel” technique. IP-CHA has a three-dimensional structure with spherical pores of uniform size that are interconnected by window-like holes; the material also demonstrated adequate compression strength. In animal experiments, IP-CHA showed superior osteoconduction, with the majority of pores filled with newly formed bone. The interconnected porous structure facilitates bone tissue engineering by allowing the introduction of bone cells, osteotropic agents, or vasculature into the pores. In this article, we review the accumulated data on bone tissue engineering using the novel scaffold, focusing especially on new techniques in combination with bone morphogenetic protein (BMP) or mesenchymal stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DJ Prolo JJ Rodrigo (1985) ArticleTitleContemporary bone graft physiology and surgery Clin Orthop 200 322–342

    Google Scholar 

  2. ED Arrington WJ Smith HG Chambers AL Bucknell NA Davino (1996) ArticleTitleComplications of iliac crest bone graft harvesting Clin Orthop 329 300–309

    Google Scholar 

  3. JC Banwart MA Asher RS Hassanein (1995) ArticleTitleIliac crest bone graft harvest donor site morbidity. A statistical evaluation Spine 20 1055–1060

    Google Scholar 

  4. EM Younger MW Chapman (1989) ArticleTitleMorbidity at bone graft donor sites J Orthop Trauma 3 192–195

    Google Scholar 

  5. RW Bucholz A Carlton RE Holmes (1987) ArticleTitleHydroxyapatite and tricalcium phosphate bone graft substitute Orthop Clin North Am 18 323–334

    Google Scholar 

  6. K Ishihara H Arai N Nakabayashi S Morita KI Furuya (1992) ArticleTitleAdhesive bone cement containing hydroxyapatite particles as bone compatible filter J Biomed Mater Res 26 937–945

    Google Scholar 

  7. DJ Sartoris DH Gershuni WH Akeson RE Holmes D Resnick (1986) ArticleTitleCoralline hydroxyapatite bone graft substitutes: preliminary report of radiographic evaluation Radiology 159 133–137

    Google Scholar 

  8. S Fujibayashi HM Kim M Neo M Uchida T Kokubo T Nakamura (2003) ArticleTitleRepair of segmental long bone defect in rabbit femur using bioactive titanium cylindrical mesh cage Biomaterials 24 3445–3451

    Google Scholar 

  9. CN Cornell JM Lane M Chapman R Merkow D Seligson S Henry R Gustilo K Vincent (1991) ArticleTitleMulticenter trial of Collagraft as bone graft substitute J Orthop Trauma 5 1–8

    Google Scholar 

  10. RE Holmes RW Bucholz V Mooney (1987) ArticleTitlePorous hydroxyapatite as a bone graft substitute in diaphyseal defects: a histometric study J Orthop Res 5 114–121

    Google Scholar 

  11. RW Bucholz A Carlton R Holmes (1989) ArticleTitleInterporous hydroxyapatite as a bone graft substitute in tibial plateau fractures Clin Orthop 240 53–62

    Google Scholar 

  12. A Uchida N Araki Y Shinto H Yoshikawa E Kurisaki K Ono (1990) ArticleTitleThe use of calcium hydroxyapatite ceramic in bone tumour surgery J Bone Joint Surg 72B 298–302

    Google Scholar 

  13. H Yoshikawa A Uchida (1999) Clinical application of calcium hydroxylapatite ceramic in bone tumor surgery DL Wise (Eds) Biomaterials and Bioengineering Handbook Marcel Dekker New York 433–455

    Google Scholar 

  14. A Matsumine A Myoui K Kusuzaki N Araki M Seto H Yoshikawa A Uchida (2004) ArticleTitleCalcium hydroxyapatite ceramic implants in bone tumor surgery. A long-term follow-up study J Bone Joint Surg 86B 719–725

    Google Scholar 

  15. RA Ayers SJ Simske CR Nunes LM Wolford (1998) ArticleTitleLong-term bone ingrowth and residual micro hardness of porous block hydroxyapatite implants in humans J Oral Maxillofac Surg 56 1297–1301

    Google Scholar 

  16. N Tamai A Myoui T Tomita T Nakase J Tanaka T Ochi H Yoshikawa (2002) ArticleTitleNovel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo J Biomed Mater Res 59 110–117

    Google Scholar 

  17. JA Steinkamp KM Hansen HA Crissman (1976) ArticleTitleFlow microfluorometric and light-scatter measurement of nuclear and cytoplasmic size in mammalian cells J Histochem Cytochem 24 292–297

    Google Scholar 

  18. RB Martin MW Chapman NA Sharkey SL Zissimos B Bay EC Shors (1993) ArticleTitleBone ingrowth and mechanical properties of coralline hydroxyapatite 1 year after implantation Biomaterials 14 341–348

    Google Scholar 

  19. A Myoui N Tamai M Nishikawa N Araki T Nakase S Akita H Yoshikawa (2004) Three-dimensionally engineered hydroxyapatite ceramics with interconnected pores as a bone substitute and tissue engineering scaffold MJ Yaszemski DJ Trantolo KU Lewandrowski V Hasirci DE Altobelli DL Wise (Eds) Biomaterials in orthopedics Marcel Dekker New York 287–300

    Google Scholar 

  20. MR Urist (1965) ArticleTitleBone: formation by autoinduction Science 150 893–899

    Google Scholar 

  21. JM Wozney V Rosen (1998) ArticleTitleBone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair Clin Orthop 346 26–37

    Google Scholar 

  22. S Miyamoto K Takaoka T Okada H Yoshikawa J Hashimoto S Suzuki K Ono (1993) ArticleTitlePolylactic acid–polyethylene glycol block copolymer: a new biodegradable synthetic carrier for bone morphogenetic protein Clin Orthop 294 333–343

    Google Scholar 

  23. N Saito T Okada H Horiuchi N Murakami J Takahashi M Nawata H Ota S Miyamoto K Nozaki K Takaoka (2001) ArticleTitleBiodegradable poly lactic acid–polyethylene glycol block copolymers as a BMP delivery system for inducing bone J Bone Joint Surg 83A S92–S98

    Google Scholar 

  24. T Kaito A Myoui K Takaoka N Saito M Nishikawa N Tamai H Ohgushi H Yoshikawa (2005) ArticleTitlePotentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA-PEG/hydroxyapatite composite Biomaterials 26 73–79

    Google Scholar 

  25. H Ohgushi AI Caplan (1999) ArticleTitleStem cell technology and bioceramics: from cell to gene engineering J Biomed Mater Res 48 913–927

    Google Scholar 

  26. H Ohgushi Y Dohi T Katuda S Tamai S Tabata Y Suwa (1996) ArticleTitleIn vitro bone formation by rat marrow cell culture J Biomed Mater Res 32 333–340

    Google Scholar 

  27. M Nishikawa A Myoui H Ohgushi M Ikeuchi N Tamai H Yoshikawa (2004) ArticleTitleBone tissue engineering using novel interconnected porous hydroxyapatite ceramics combined with marrow mesenchymal cells: Quantitative and three-dimensional image analysis Cell Transplant 13 367–376

    Google Scholar 

  28. M Nishikawa H Ohgushi (2004) Calcium phosphate ceramics in Japan MJ Yaszemski DJ Trantolo KU Lewandrowski V Hasirci DE Altobelli DL Wise (Eds) Biomaterials in orthopedics Marcel Dekker New York 425–436

    Google Scholar 

  29. SL Bernard GJ Picha (1991) ArticleTitleThe use of coralline hydroxyapatite in a “biocomposite” free flap Plast Reconstr Surg 87 96–105

    Google Scholar 

  30. F Casabona I Martin A Muraglia P Berrino P Santi R Cancedda R Quarto (1998) ArticleTitlePrefabricated engineered bone flaps: an experimental model of tissue reconstruction in plastic surgery Plast Reconstr Surg 101 577–581

    Google Scholar 

  31. S Akita N Tamai A Myoui M Nishikawa T Kaito K Takaoka H Yoshikawa (2004) ArticleTitleCapillary vessel network integration by inserting a vascular pedicle enhances bone formation in tissue-engineered bone using interconnected porous hydroxyapatite ceramics Tissue Eng 10 789–795

    Google Scholar 

  32. S Wakitani K Imoto T Yamamoto M Saito N Murata M Yoneda (2002) ArticleTitleHuman autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees Osteoarthritis Cartilage 10 199–206

    Google Scholar 

  33. SD Cook LP Patron SL Salkeld DC Rueger (2003) ArticleTitleRepair of articular cartilage defects with osteogenic protein-1 (BMP-7) in dogs J Bone Joint Surg 85A 116–123

    Google Scholar 

  34. C Hidaka LR Goodrich CT Chen RF Warren RG Crysta AJ Nixon (2003) ArticleTitleAcceleration of cartilage repair by genetically modified chondrocyte overexpressing bone morphogenetic protein-7 J Orthop Res 21 573–583

    Google Scholar 

  35. N Tamai A Myoui M Hirao T Kaito T Ochi J Tanaka K Takaoka H Yoshikawa (2005) ArticleTitleA new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA/PEG), and bone morphogenetic protein-2 (rhBMP-2 Osteoarthritis Cartilage 13 405–417

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Yoshikawa MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshikawa, H., Myoui, A. Bone tissue engineering with porous hydroxyapatite ceramics. J Artif Organs 8, 131–136 (2005). https://doi.org/10.1007/s10047-005-0292-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-005-0292-1

Key words

Navigation