Skip to main content

Advertisement

Log in

Enhancing Alendronate Release from a Novel PLGA/Hydroxyapatite Microspheric System for Bone Repairing Applications

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The goal of this study was to exploit the multifunction of PLGA based microsphere as efficient alendronate delivery and also as potential injectable cell carrier for bone-repairing therapeutics.

Materials and Methods

Novel poly (lactic-co-glycolic acid) (PLGA)-hybridizing -hydroxyapatite (HA) microspheres loaded with bisphosphonate-based osteoporosis preventing drugs, alendronate (AL), are prepared with solid/oil/water (s/o/w) or water/oil/water (w/o/w) technique. Macrophage resistance was evaluated by MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, DNA assay and Live/dead staining, and osteoblast proliferation and maturation was assessed by MTT assay, Alkaline phosphatase (ALP) activity assay and Real time-PCR.

Results

In such fabricated AL laden PLGA/HA microspheric composites (abbreviated “PLGA/HA-AL”), the introduction of HA component has been proven capable of largely enhancing drug encapsulation efficiency especially when the single emulsion protocol is adopted. The in-vitro drug (AL) releasing profile of PLGA/HA-AL system was plotted basing over 30 days’ data collection. It indicates a sustained releasing tendency despite a minimal burst at the very beginning. The in-vitro bone-repairing efficacy of PLGA/HA-AL system was first tested with macrophages that are identified as precursors of osteoclasts and potentially responsible for osteoporosis. The results indicated that the AL release significantly inhibited the growth of macrophages. Additionally, as a central executor for osteogenesis, osteoblasts were also treated with PLGA/HA-AL system in vitro. The outcomes confirmed that this controlled release system functions to improve osteoblast proliferation and also enables upregulation of a key osteogenic enzyme ALP.

Conclusions

By pre-resisting osteoclastic commitment and promoting osteoblastic development in vitro, this newly designed PLGA/HA-AL controlled release system is promoting for bone-repairing therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Fleisch. Bisphosphonates: mechanisms of action. Endocr. Rev. 19:80–100 (1998). doi:10.1210/er.19.1.80.

    Article  PubMed  CAS  Google Scholar 

  2. R. G. Russell, and M. J. Rogers. Bisphosphonates: from the laboratory to the clinic and back again. Bone. 25:97–106 (1999). doi:10.1016/S8756-3282(99)00116-7.

    Article  PubMed  CAS  Google Scholar 

  3. H. Shinoda, G. Adamek, R. Felix, H. Fleisch, R. Schenk, and P. Hagan. Structure–activity relationships of various bisphosphonates. Calcif. Tissue Int. 35:87–99 (1983). doi:10.1007/BF02405012.

    Article  PubMed  CAS  Google Scholar 

  4. E. van Beek, M. Hoekstra, M. van de Ruit, C. Lowik, and S. Papapoulos. Structural requirements for bisphosphonate actions in vitro. J. Bone Miner. Res. 9:1875–1882 (1994).

    PubMed  CAS  Google Scholar 

  5. G. A. Rodan. Mechanism of action of bisphosphonates. Annu. Rev. Pharmacol. Toxicol. 38:375–388 (1998). doi:10.1146/annurev.pharmtox.38.1.375.

    Article  PubMed  CAS  Google Scholar 

  6. D. E. Hughes, K. R. Wright, H. L. Uy, A. Sasaki, T. Yoneda, G. D. Roodman, G. R. Mundy, and B. F. Boyce. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J. Bone Miner. Res. 10:1478–1487 (1995).

    Article  PubMed  CAS  Google Scholar 

  7. A. Ezra, and G. Golomb. Administration routes and delivery systems of bisphosphonates for the treatment of bone resorption. Adv. Drug Deliv. Rev. 42:175–195 (2000). doi:10.1016/S0169-409X(00)00061-2.

    Article  PubMed  CAS  Google Scholar 

  8. S. Patashnik, L. Rabinovich, and G. Golomb. Preparation and evaluation of chitosan microspheres containing bisphosphonates. J. Drug Target. 4:371–380 (1997).

    Article  PubMed  CAS  Google Scholar 

  9. E. H. Nafea, M. A. EI-Massik, L. K. EI-Khordagui, M. A. Marei, and N. M. Khalafallah. Alendronate PLGA microspheres with high loading efficiency fro dental applications. J. Microencapsul. 24:525–538 (2007). doi:10.1080/02652040701439807.

    Article  PubMed  CAS  Google Scholar 

  10. A. Nieto, F. Balas, M. Colilla, M. Manzano, M. Vallet-Regí. Functionalization degree of SBA-15 as key factor to modulate sodium alendronate dosage. Microporous. Mesoporous. Mater. 2008 . doi:10.1016/j.micromeso.2008.03.025.

  11. F. Balas, M. Manzano, P. Horcajada, and M. Vallet-Regi. Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials. J. Am. Chem. Soc. 128:8116–8117 (2006). doi:10.1021/ja062286z.

    Article  PubMed  CAS  Google Scholar 

  12. X. Shi, Y. Wang, K. Wei, L. Ren, and C. Lai. Self-assembly of nanohydroxyapatite in mesoporous silica. J. Mater. Sci., Mater. Med. 19:2933–2940 (2008). doi:10.1007/s10856-008-3424-3.

    Article  CAS  Google Scholar 

  13. K. Balani, R. Anderson, T. Laha, M. Andara, J. Tercero, E. Crumpler, and A. Agarwal. Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro. Biomaterials. 28:618–624 (2007). doi:10.1016/j.biomaterials.2006.09.013.

    Article  PubMed  CAS  Google Scholar 

  14. B. Palazzo, M. Iafisco, M. Laforgia, N. Margiotta, G. Natile, C. L. Bianchi, and D. Walsh. Biomimetic hydroxyapatite-drug nanocrystals as potential bone substitutes with antitumor drug delivery properties. Adv. Funct. Mater. 17:2180–2188 (2007). doi:10.1002/adfm.200600361.

    Article  CAS  Google Scholar 

  15. J. Schnieders, U. Gbureck, R. Thull, and T. Kissel. Controlled release of gentamicin from calcium phosphate-poly(lactic acid-co-glycolic acid) composite bone cement. Biomaterials. 27:4239–4249 (2006). doi:10.1016/j.biomaterials.2006.03.032.

    Article  PubMed  CAS  Google Scholar 

  16. H. Nie, and C. -H. Wang. Fabrication and characterization of PLGA/HAP composite scaffolds for delivery of BMP-2 plasmid DNA. J. Control. Release. 120:111–121 (2007). doi:10.1016/j.jconrel.2007.03.018.

    Article  PubMed  CAS  Google Scholar 

  17. E. Boanini, P. Torricelli, M. Gazzano, R. Giardino, and A. Bigi. Alendronate-hydroxyapatite nanocomposites and their interaction with osteoclasts and osteoblast-like cells. Biomaterials. 29:790–796 (2008). doi:10.1016/j.biomaterials.2007.10.040.

    Article  PubMed  CAS  Google Scholar 

  18. K. Park, J. S. Park, D. G. Woo, H. N. Yang, H. M. Chung, and K. H. Park. The use of chondrogenic differentiation drugs to induce stem cell differentiation using double bead microspheres structure. Biomaterials. 29:2490–2500 (2008). doi:10.1016/j.biomaterials.2008.02.017.

    Article  PubMed  CAS  Google Scholar 

  19. G. E. Rooney, C. Moran, S. S. McMahon, T. Ritter, M. Maenz, A. Flügel, P. Dockery, and F. P. Barry. Gene-modified mesenchymal stem cells express functionally active nerve growth factor on an engineering poly lactic glycolic acid (PLGA)substrate. Tissue Eng. A. 14:681–690 (2008). doi:10.1089/tea.2007.0260.

    Article  CAS  Google Scholar 

  20. M. Borden, M. Attawia, Y. Khan, and C. T. Laurencin. Tissue engineered microsphere-based matrices for bone repair: design and evaluation. Biomaterials. 23:551–559 (2002). doi:10.1016/S0142-9612(01)00137-5.

    Article  PubMed  CAS  Google Scholar 

  21. T. Jiang, W. I. Abdel-Fattah, and C. T. Laurencin. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Biomaterials. 27:4894–4903 (2006). doi:10.1016/j.biomaterials.2006.05.025.

    Article  PubMed  CAS  Google Scholar 

  22. T. K. Kim, J. J. Yoon, D. S. Lee, and T. G. Park. Gas foamed open porous biodegradable polymeric microspheres. Biomaterials. 27:152–159 (2006). doi:10.1016/j.biomaterials.2005.05.081.

    Article  PubMed  CAS  Google Scholar 

  23. E. Fujii, M. Ohkubo, K. Tsuru, S. Hayakawa, A. Osaka, K. Kawabata, C. Bonhomme, and F. Babonneau. Selective protein adsorption property and characterization of nano-crystalline zinc-containing hydroxyapatite. Acta Biomater. 2:69–74 (2006). doi:10.1016/j.actbio.2005.09.002.

    Article  PubMed  Google Scholar 

  24. J. Kuljanin, I. Jankovi, J. Nedeljkovi, D. Prstojevi, and V. Marinkovi. Spectrophotometric determination of alendronate in pharmaceutical formulations via complex formation with Fe(III) ions. J. Pharm. Biomed. Anal. 28:1215–1220 (2002). doi:10.1016/S0731-7085(02)00021-3.

    Article  PubMed  CAS  Google Scholar 

  25. A. P. Wilson. Cytotoxicity and viability assays in animal cell culture: a practical approach, 3rd ed. In J. R. W. Masters (ed.), Oxford University Press, Oxford, 2000, Vol. 1.

  26. S. -W. Tsai, F. -Y. Hsu, and P. -L. Chen. Beads of collagen-nanohydroxyapatite composites prepared by a biomimetic process and the effects od their surface texture on cellular behavior in MG63 osteoblast-like cells. Acta Biomater. 4:1332–1341 (2008). doi:10.1016/j.actbio.2008.03.015.

    Article  PubMed  CAS  Google Scholar 

  27. Invitrogen. Trolzol ® Reagent. Cat. No. 15569–018.

  28. Q. Xu, and J. T. Czernuszka. Controlled release of amoxicillin from hydroxyapatite-coated poly(lactic-co-glycolic acid) microspheres. J. Control. Release. 127:146–153 (2008).

    PubMed  CAS  Google Scholar 

  29. G. Ficarra, F. Beninati, I. Rubino, A. Vannucchi, G. Longo, P. Tonelli, and G. Pini Prato. Osteonecrosis of the jaws in periodontal patients with a history of bisphosphonates treatment. J. Clin. Periodontol. 32:1123–1128 (2005). doi:10.1111/j.1600-051X.2005.00842.x.

    Article  PubMed  CAS  Google Scholar 

  30. J. H. Lin, I. W. Chen, and F. A. Deluna. On the absorption of alendronate in rats. J. Pharm. Sci. 83:1741–1746 (1994). doi:10.1002/jps.2600831218.

    Article  PubMed  CAS  Google Scholar 

  31. J. E. Fisher, M. J. Rogers, J. M. Halasy, S. P. Luckman, D. E. Hughes, P. J. Masarachia, G. Wesolowski, R. G. G. Russell, G. A. Rodan, and A. A. Reszka. Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalionate pathway, prevents inhibition of osteoclasts formation, bone resorption, and kinase activation in vitro. Proc. Natl. Acad. Sci. 96:133–139 (1999). doi:10.1073/pnas.96.1.133.

    Article  PubMed  CAS  Google Scholar 

  32. K. L. Kavanagh, K. Guo, J. E. Dunford, X. Wu, S. Knapp, F. H. Ebetino, M. J. Rogers, G. G. Russell, and U. Oppermann. The molecular mechanism if nitrogen-containing bisphophonates as antiosteoporosis drugs. Proc. Natl. Acad. Sci. 103:7829–7834 (2006). doi:10.1073/pnas.0601643103.

    Article  PubMed  CAS  Google Scholar 

  33. S. Harada, and G. A. Rodan. Control of osteoblast function and regulation of bone mass. Nature. 423:349–355 (2003). doi:10.1038/nature01660.

    Article  PubMed  CAS  Google Scholar 

  34. G. A. Rodan, and T. J. Martin. Therapeutic approaches to bone diseases. Science. 289:1508–1514 (2000). doi:10.1126/science.289.5484.1508.

    Article  PubMed  CAS  Google Scholar 

  35. F. von Konch, C. Jaquiery, M. Kowalsky, S. Schaeren, C. Alabre, I. Martin, H. E. Rubash, and A. L. Shanbhag. Effects of bisphosphonates on proliferation and osteoblast differentiation of human bone marrow stromal cells. Biomaterials. 26:6941–6949 (2005). doi:10.1016/j.biomaterials.2005.04.059.

    Article  CAS  Google Scholar 

  36. P. Tsagozis, F. Erikssion, and P. Pisa. Zoledronic acid modulates antitumoral responses of prostate cancer-tumor associated macrophages. Cancer Immunol. Immun. 57:1451–1459 (2008). doi:10.1007/s00262-008-0482-9.

    CAS  Google Scholar 

  37. R. Pandey, J. M. W. Quinn, A. Sabokbar, and N. A. Athanasou. Bisphosphonate inhibition of bone resorption induced by particulate biomaterial-associated macrophages. Acta Orthop. Scand. 67:221–228 (1996).

    Article  PubMed  CAS  Google Scholar 

  38. S. C. Marks, and S. N. Popoff. Bone cell biology: the regulation of development, structure, and function in the skeleton. Am. J. Anat. 183:1–44 (1988). doi:10.1002/aja.1001830102.

    Article  PubMed  Google Scholar 

  39. J. M. W. Quinn, J. O. McGee, and N. A. Athanasou. Cellular and hormonal factors influencing monocyte differentiation in osteoclastic bone-resorbing cells. Endocrinology. 134:2416–2423 (1994). doi:10.1210/en.134.6.2416.

    Article  PubMed  CAS  Google Scholar 

  40. J. M. W. Quinn, A. Sabokbar, and N. A. Athanasou. Cells of the mononuclear phagocyte series differentiate into osteoclastic lacunar bone-resorbing cells. J. Pathol. 179:106–111 (1996). doi:10.1002/(SICI)1096-9896(199605)179:1<106::AID-PATH535>3.0.CO;2-H.

    Article  PubMed  CAS  Google Scholar 

  41. E. Cohen-Sela, O. Rosenzweig, J. Gao, H. Epstein, I. Gati, R. Reich, H. D. Danenberg, and G. Golomb. Alendronate-loaded nanoparticles deplete monocytes and attenuate restenosis. J. Control. Release. 113:23–30 (2006). doi:10.1016/j.jconrel.2006.03.010.

    Article  PubMed  CAS  Google Scholar 

  42. A. Vignery. Macrophage fusion: the marking of osteoclasts and giant cells. J. Exp. Med. 202:337–340 (2005). doi:10.1084/jem.20051123.

    Article  PubMed  CAS  Google Scholar 

  43. D. -A. Wang, C. G. Williams, F. Yang, N. Cher, H. Lee, and J. H. Elisseeff. Bioresponsive phosphoester hydrogels for bone tissue engineering. Tissue Eng. 11:201–213 (2005). doi:10.1089/ten.2005.11.201.

    Article  PubMed  CAS  Google Scholar 

  44. W. Xue, B. V. Krishna, A. Bandyopadhyay, and S. Bose. Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater. 3:1007–1018 (2007). doi:10.1016/j.actbio.2007.05.009.

    Article  PubMed  CAS  Google Scholar 

  45. G. -I. Im, S. A. Qureshi, J. Kenney, H. E. Rubash, and A. S. Shanbhag. Osteoblast proliferation and maturation by bisphosphonates. Biomaterials. 25:4105–4115 (2004). doi:10.1016/j.biomaterials.2003.11.024.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by China Scholarship Council (2007U33046), and the National Natural Science Foundation of China (Grant 50572029), the Key Programs of the Ministry of Education (Grant 305012), the Key Projects in the National Science & Technology Pillar Program in the Eleventh Five-year Plan Period (Grant 2006BA116B04), the State Key Program of National Natural Science of China (Grant 50732003), and also supported by Grant ARC 10/06, Ministry of Education, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-An Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, X., Wang, Y., Ren, L. et al. Enhancing Alendronate Release from a Novel PLGA/Hydroxyapatite Microspheric System for Bone Repairing Applications. Pharm Res 26, 422–430 (2009). https://doi.org/10.1007/s11095-008-9759-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9759-0

KEY WORDS

Navigation