Skip to main content

Advertisement

Log in

Understanding and mitigating mechanical degradation in lithium–sulfur batteries: additive manufacturing of Li2S composites and nanomechanical particle compressions

  • Invited Feature Paper
  • Focus Issue: Multi-material Additive Manufacturing
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Lithium–sulfur batteries are poised to outcompete lithium-ion batteries in key sectors such as transportation and grid storage due to the low cost and high theoretical energy density of sulfur as a cathode material. Widespread implementation of this technology is hindered by significant degradation during cycling, including mechanical failure via cracking or detachment of insulating lithium sulfide (Li2S) from the conductive matrix in the cathode, causing irreversible capacity fade. We developed a technique to additively manufacture Li2S composites to fabricate rationally designed cathodes and demonstrate the utility of a three dimensionally architected Li2S composite cathode in a battery. We additionally measure the yet unknown material properties and deformation mechanisms of Li2S powders via in situ scanning electron microscope (SEM) nanomechanical experiments. Measuring these mechanical properties is a first step towards understanding the process of mechanical degradation and is necessary to enable the rational design of high energy density, long-cycling, and mechanically robust sulfur cathodes.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figrue 5
Figure 6

Similar content being viewed by others

Data availability

The data and code generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928 (2011)

    Article  CAS  Google Scholar 

  2. A. Bills, S. Sripad, W.L. Fredericks, M. Singh, V. Viswanathan, Performance metrics required of next-generation batteries to electrify commercial aircraft. ACS Energy Lett. 5(2), 663 (2020)

    Article  CAS  Google Scholar 

  3. Z.P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu, M. Fowler, Z. Chen, Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3(4), 279 (2018)

    Article  Google Scholar 

  4. A. Manthiram, Y. Fu, S.H. Chung, C. Zu, Y.S. Su, Rechargeable lithium–sulfur batteries. Chem. Rev. 114(23), 11751 (2014)

    Article  CAS  Google Scholar 

  5. Y.V. Mikhaylik, J.R. Akridge, Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 151(11), A1969 (2004)

    Article  CAS  Google Scholar 

  6. S.S. Zhang, Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J. Power Sources 231, 153 (2013)

    Article  CAS  Google Scholar 

  7. P. Bai, J. Li, F.R. Brushett, M.Z. Bazant, Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9(10), 3221 (2016)

    Article  CAS  Google Scholar 

  8. S. Waluś, G. Offer, I. Hunt, Y. Patel, T. Stockley, J. Williams, R. Purkayastha, Volumetric expansion of Lithium-Sulfur cell during operation—fundamental insight into applicable characteristics. Energy Storage Mater. 10, 233 (2018)

    Article  Google Scholar 

  9. M. Wild, L. O’Neill, T. Zhang, R. Purkayastha, G. Minton, M. Marinescu, G.J. Offer, Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci. 8, 3477 (2015)

    Article  CAS  Google Scholar 

  10. Q. Pang, A. Shyamsunder, B. Narayanan, C.Y. Kwok, L.A. Curtiss, L.F. Nazar, Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nat. Energy 3(9), 783 (2018)

    Article  CAS  Google Scholar 

  11. R. Xu, J. Lu, K. Amine, Progress in mechanistic understanding and characterization techniques of Li–S batteries. Adv. Energy Mater. 5(16), 1500408 (2015)

    Article  Google Scholar 

  12. M.T. McDowell, S. Xia, T. Zhu, The mechanics of large-volume-change transformations in high-capacity battery materials. Extreme Mech. Lett. 9, 480 (2016)

    Article  Google Scholar 

  13. Y. Zhang, Y. Luo, C. Fincher, S. McProuty, G. Swenson, S. Banerjee, M. Pharr, In situ measurements of stress evolution in composite sulfur cathodes. Energy Storage Mater. 16, 491 (2019)

    Article  Google Scholar 

  14. Y. Zhang, C. Fincher, S. McProuty, M. Pharr, In-operando imaging of polysulfide catholytes for Li–S batteries and implications for kinetics and mechanical stability. J. Power Sources 434, 226727 (2019)

    Article  CAS  Google Scholar 

  15. W.Y. Li, G.Y. Zheng, Y. Yang, Z.W. Seh, N. Liu, Y. Cui, High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach. Proc. Natl Acad. Sci. USA 110(18), 7148 (2013)

    Article  CAS  Google Scholar 

  16. Y. Son, J.-S. Lee, Y. Son, J.-H. Jang, J. Cho, Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries. Adv. Energy Mater. 5(16), 1500110 (2015)

    Article  Google Scholar 

  17. M. Shaibani, M.S. Mirshekarloo, R. Singh, C.D. Easton, M.C. Dilusha Cooray, N. Eshraghi, T. Abendroth, S. Dörfler, H. Althues, S. Kaskel, A.F. Hollenkamp, M.R. Hill, M. Majumder, Expansion-tolerant architectures for stable cycling of ultrahigh-loading sulfur cathodes in lithium–sulfur batteries. Sci. Adv. 6(1), 2757 (2020)

    Article  Google Scholar 

  18. A. Ambrosi, M. Pumera, 3D-printing technologies for electrochemical applications. Chem. Soc. Rev. 45(10), 2740 (2016)

    Article  CAS  Google Scholar 

  19. K. Narita, M.A. Citrin, H. Yang, X. Xia, J.R. Greer, 3D architected carbon electrodes for energy storage. Adv. Energy Mater. 11(5), 2002637 (2020)

    Article  Google Scholar 

  20. Y. Pang, Y. Cao, Y. Chu, M. Liu, K. Snyder, D. MacKenzie, C. Cao, Additive manufacturing of batteries. Adv. Funct. Mater. 30(1), 1906244 (2020)

    Article  CAS  Google Scholar 

  21. A. Izumi, M. Sanada, K. Furuichi, K. Teraki, T. Matsuda, K. Hiramatsu, H. Munakata, K. Kanamura, Development of high capacity lithium-ion battery applying three-dimensionally patterned electrode. Electrochim. Acta 79, 218 (2012)

    Article  CAS  Google Scholar 

  22. K. Sun, T.-S. Wei, B.Y. Ahn, J.Y. Seo, S.J. Dillon, J.A. Lewis, 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 25(33), 4539 (2013)

    Article  CAS  Google Scholar 

  23. K. Shen, H. Mei, B. Li, J. Ding, S. Yang, 3D printing sulfur copolymer-graphene architectures for Li–S batteries. Adv. Energy Mater. 8(4), 1701527 (2018)

    Article  Google Scholar 

  24. X. Gao, Q. Sun, X. Yang, J. Liang, A. Koo, W. Li, J. Liang, J. Wang, R. Li, F. Benjamin, A. David, Toward a remarkable Li–S battery via 3D printing. Nano Energy 56(August), 595 (2018)

    Google Scholar 

  25. C. Chen, J. Jiang, W. He, W. Lei, Q. Hao, X. Zhang, 3D printed high-loading lithium–sulfur battery toward wearable energy storage. Adv. Funct. Mater. 30(10), 1909469 (2020)

    Article  CAS  Google Scholar 

  26. D.W. Yee, M.A. Citrin, Z.W. Taylor, M.A. Saccone, V.L. Tovmasyan, J.R. Greer, Hydrogel-based additive manufacturing of lithium cobalt oxide. Adv. Mater. Technol. 6(2), 2000791 (2020)

    Article  Google Scholar 

  27. I. Cooperstein, M. Layani, S. Magdassi, 3D printing of porous structures by UV-curable O/W emulsion for fabrication of conductive objects. J. Mater. Chem. C 3(9), 2040 (2015)

    Article  CAS  Google Scholar 

  28. G.-L. Ying, N. Jiang, S. Maharjan, Y.-X. Yin, R.-R. Chai, X. Cao, J.-Z. Yang, A.K. Miri, S. Hassan, Y.S. Zhang, Aqueous two-phase emulsion bioink-enabled 3D bioprinting of porous hydrogels. Adv. Mater. 30(50), 1805460 (2018)

    Article  Google Scholar 

  29. D.W. Wang, Q. Zeng, G. Zhou, L. Yin, F. Li, H.M. Cheng, I.R. Gentle, G.Q.M. Lu, Carbon–sulfur composites for Li–S batteries: status and prospects. J. Mater. Chem. A 1(33), 9382 (2013)

    Article  CAS  Google Scholar 

  30. F. Ye, H. Noh, J. Lee, H. Lee, H.T. Kim, Li2S/carbon nanocomposite strips from a low-temperature conversion of Li2SO4 as high-performance lithium–sulfur cathodes. J. Mater. Chem. A 6(15), 6617 (2018)

    Article  CAS  Google Scholar 

  31. I.M. Lifshitz, V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19(1–2), 35 (1961)

    Article  Google Scholar 

  32. H. Park, H.S. Koh, D.J. Siegel, First-principles study of redox end members in lithium–sulfur batteries. J. Phys. Chem. C 119(9), 4675 (2015)

    Article  CAS  Google Scholar 

  33. W. Li, H. Yao, K. Yan, G. Zheng, Z. Liang, Y.-M. Chiang, Y. Cui, The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6(1), 7436 (2015)

    Article  Google Scholar 

  34. G. Zhang, Z.-W. Zhang, H.-J. Peng, J.-Q. Huang, Q. Zhang, A toolbox for lithium–sulfur battery research: methods and protocols. Small Methods 1(7), 1700134 (2017)

    Article  Google Scholar 

  35. A. Vizintin, L. Chabanne, E. Tchernychova, I. Arčon, L. Stievano, G. Aquilanti, M. Antonietti, T.P. Fellinger, R. Dominko, The mechanism of Li2S activation in lithium–sulfur batteries: can we avoid the polysulfide formation? J. Power Sources 344, 208 (2017)

    Article  CAS  Google Scholar 

  36. J. Paul, S. Romeis, J. Tomas, W. Peukert, A review of models for single particle compression and their application to silica microspheres. Adv. Powder Technol. 25(1), 136 (2014)

    Article  CAS  Google Scholar 

  37. V.L. Popov, Contact Mechanics and Friction (Springer, Berlin, 2010), pp. 55–70

    Book  Google Scholar 

  38. M. De Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Sluiter, C.K. Ande, S. Van Der Zwaag, J.J. Plata, C. Toher, S. Curtarolo, G. Ceder, K.A. Persson, M. Asta, Charting the complete elastic properties of inorganic crystalline compounds. Sci. Data 2, 150009 (2015)

    Article  Google Scholar 

  39. J. Jiang, Q. Fan, S. Chou, Z. Guo, K. Konstantinov, H. Liu, J. Wang, Li2S-based Li-ion sulfur batteries: progress and prospects. Small 17(9), 1903934 (2019)

    Article  Google Scholar 

  40. Z. Li, Y. Zhou, Y. Wang, Y.-C. Lu, Solvent-mediated Li2S electrodeposition: a critical manipulator in lithium–sulfur batteries. Adv. Energy Mater. 9(1), 1802207 (2019)

    Article  Google Scholar 

  41. A. Sakuda, A. Hayashi, M. Tatsumisago, Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Sci. Rep. 3(1), 2261 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the following people: Professor K. See for productive discussions, use of the glovebox, and coin cell materials. J. H. Kang for assistance with TGA. C. Ma for assistance with SEM/EDS. H. Zhang and B. Edwards for assistance with nanomechanical measurements.

Funding

This work was supported by the Resnick Sustainability Institute.

Author information

Authors and Affiliations

Authors

Contributions

MAS and JRG conceived of and designed the experiments. MAS performed the experiments. MAS and JRG wrote the manuscript.

Corresponding author

Correspondence to Max A. Saccone.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4908 kb)

Supplementary file2 (MP4 13053 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saccone, M.A., Greer, J.R. Understanding and mitigating mechanical degradation in lithium–sulfur batteries: additive manufacturing of Li2S composites and nanomechanical particle compressions. Journal of Materials Research 36, 3656–3666 (2021). https://doi.org/10.1557/s43578-021-00182-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00182-w

Keywords

Navigation