Skip to main content
Log in

Cellulose Biocomposites—From Bulk Moldings to Nanostructured Systems

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Cellulose biocomposites are widely used in industry as a low-cost engineering material with plant fiber reinforcement. However, chemical and microstructural heterogeneity causes low strength, low strain-to-failure, high moisture sensitivity, and odor and discoloration problems. Efforts toward improved performance through fiber orientation control, increased fiber lengths, and biopolymer use are reviewed. Interfacial strength control and moisture sensitivity are remaining challenges. As an attractive alternative reinforcement, high-quality cellulose nanofibers obtained by wood pulp fiber disintegration can be prepared at low cost. These nanofibers have high length/diameter ratios, diameters in the 5–15 nm range, and intrinsically superior physical properties. Wood cellulose nanofibers are interesting as an alternative reinforcement to more expensive nanoparticles, such as carbon nanotubes. Nanopaper and polymer matrix nanocomposites based on cellulose nanofiber networks show high strength, high work-of-fracture, low moisture adsorption, low thermal expansion, high thermal stability, high thermal conductivity, exceptional barrier properties, and high optical transparency. The favorable mechanical performance of bioinspired foams and low-density aerogels is reviewed. Future applications of cellulose biocomposites will be extended from the high-volume/low-cost end toward high-tech applications, where cellulose properties are fully exploited in nanostructured materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Clemons, For. Prod. J. 52, 10 (2002).

    Google Scholar 

  2. R.M. Rowell, J. Polym. Environ. 15, 229 (2007).

    Google Scholar 

  3. A.K. Bledski, M. Letman, A. Viksne, L. Rence, Composites Part A 36, 789 (2005).

    Google Scholar 

  4. J.Z. Lu, Q.L. Wu, H.S. McNabb, Wood Fiber Sci. 32, 88 (2000).

    Google Scholar 

  5. A.K. Bledzki, O. Faruk, Compos. Sci. Technol. 64, 693 (2004).

    Google Scholar 

  6. A.K. Bledzki, J. Gassan, Prog. Polym. Sci. 24, 221 (1999).

    Google Scholar 

  7. D.N. Saheb, J.P. Jog, Adv. Polym. Technol. 18, 351 (1999).

    Google Scholar 

  8. T. Peijs, Mater. Technol. 15, 281 (2000).

    Google Scholar 

  9. M.J. John, S. Thomas, Carbohydr. Polym. 71, 343 (2008).

    Google Scholar 

  10. T. Schlosser, J. Knothe, Kunstoffe: Plast Eur. 87, 1148 (1997).

    Google Scholar 

  11. K.P. Mieck, R. Lutzkendorf, T. Reussmann, Polym. Compos. 17, 873 (1996).

    Google Scholar 

  12. S.K. Garkhail, R.W.H. Heijenrath, T. Peijs, Appl. Compos. Mater. 7, 351 (2000).

    Google Scholar 

  13. A.K. Mohanty, M. Misra, G. Hinrichsen, Macromol. Mater. Eng. 276, 1 (2000).

    Google Scholar 

  14. K.G. Satyanarayana, G.G.C. Arizaga, F. Wypych, Prog. Polym. Sci. 34, 982 (2009).

    Google Scholar 

  15. K. Oksman, M. Skrifvars, J.F. Selin, Compos. Sci. Technol. 63, 1317 (2003).

    Google Scholar 

  16. T. Nishino, K. Nakamae, K. Hirao, M. Kotera, Compos. Sci. Technol. 63, 1281 (2003).

    Google Scholar 

  17. E. Bodros, I. Pillin, N. Montrelay, C. Baley Compos. Sci. Technol. 67, 462 (2007).

  18. N.M. Barkoula, S.K. Garkhail, T. Peijs, Ind. Crop. Prod. 31, 34 (2010).

    Google Scholar 

  19. L. Averous, N. Boquillon, Carbohydr. Polym. 56, 111 (2004).

    Google Scholar 

  20. A. O’Donnell, M.A. Dweib, R.P. Wool, Compos. Sci. Technol. 64, 1135 (2004).

    Google Scholar 

  21. E.T.N. Bisanda, M.P. Ansell, J. Mater. Sci. 27, 1690 (1992).

    Google Scholar 

  22. T.U. Gerngross, S.C. Slater, Sci. Am. 283, 36 (2000).

    Google Scholar 

  23. L. Shen, M.K. Patel, J. Polym. Environ. 16, 154 (2008).

    Google Scholar 

  24. T. Corbiere-Nicollier, B. Gfeller-Laban, L. Lundquist, Y. Leterrier, J.-A.E. Månson, O. Jollieta, Resour. Conserv. Recycl. 33, 267 (2001).

    Google Scholar 

  25. J. George, E.T.J. Klompen, T. Peijs, Adv. Compos. Lett. 10, 81 (2001).

    Google Scholar 

  26. K. Bellmann, A. Khare, Technovation 19, 721 (1999).

    Google Scholar 

  27. N. Cabrera, B. Alcock, J. Loos, T. Peijs, Proc. Inst. Mech. Eng. Part L, J. Mater. Des. Appl. 218, 145 (2004).

    Google Scholar 

  28. B. Alcock, N.O. Cabrera, N.M. Barkoula, A.B. Spoelstra, J. Loos, T. Peijs, Composites Part A 38, 147 (2007).

    Google Scholar 

  29. B. Alcock, N.O. Cabrera, N.M. Barkoula, T. Peijs, Compos. Sci. Technol. 66, 1724 (2006).

    Google Scholar 

  30. B. Alcock, N.O. Cabrera, N.M. Barkoula, C.T. Reynolds, L.E. Govaert, T. Peijs, Compos. Sci. Technol. 67, 2061 (2007).

    Google Scholar 

  31. A. Keller, Compos. Sci. Technol. 63, 1307 (2003).

    Google Scholar 

  32. M.J.A. van den Oever, M.H.B. Snijder, J. Appl. Polym. Sci. 110, 1009 (2008).

    Google Scholar 

  33. N.M. Barkoula, S.K. Garkhail, T. Peijs, J. Reinf. Plast. Compos. (September 16, 2009); DOI: 10.1177/0731684409104465.

  34. A. Stamboulis, C.A. Baillie, S.K. Garkhail, H.G.H. van Melick, T. Peijs Appl. Compos. Mater. 7, 273 (2000).

  35. A. Stamboulis, C.A. Baillie, T. Peijs, Composites Part A 32, 1105 (2001).

    Google Scholar 

  36. T.D. Hapuarachchi, G. Ren, M. Fan, P.J. Hogg, T. Peijs, Appl. Compos. Mater. 14, 251 (2007).

    Google Scholar 

  37. R. Kozlowski, M. Wladyka-Przybylak, Polym. Adv. Technol. 19, 446 (2008).

    Google Scholar 

  38. K.P. Mieck, A. Nechwatal, C. Knobelsdorf, Angew. Makromol. Chem. 224, 73 (1995).

    Google Scholar 

  39. K.P. Mieck, A. Nechwatal, C. Knobelsdorf, Angew. Makromol. Chem. 225, 37 (1995).

    Google Scholar 

  40. T. Peijs, S. Garkhail, R. Heijenrath, M. van den Oever, H. Bos, Macromol. Symp. 127, 193 (1998).

    Google Scholar 

  41. M.H.B. Snijder, H.L. Bos, Compos. Interfaces 7, 69 (2000).

    Google Scholar 

  42. J. George, M.S. Sreekala, S. Thomas, Polym. Eng. Sci. 41, 1471 (2001).

    Google Scholar 

  43. A.K. Mohanty, M. Misra, L.T. Drzal, Compos. Interfaces 8, 313 (2001).

    Google Scholar 

  44. A. Nechwatal, T. Reussmann, S. Bohm, E. Richter, Adv. Eng. Mater. 7, 68 (2005).

    Google Scholar 

  45. R. Heijenrath, T. Peijs, Adv. Compos. Lett. 5, 81 (1996).

    Google Scholar 

  46. H.L. Bos, M.J.A. van den Oever, O.C.J.J. Peters, J. Mater. Sci. 37, 1683 (2002).

    Google Scholar 

  47. M.J.A. van den Oever, H.L. Bos, K. Molenveld, Angew. Makromol. Chem. 272, 71 (1999).

    Google Scholar 

  48. J. Gassan, A.K. Bledzki, Compos. Sci. Technol. 59, 1303 (1999).

    Google Scholar 

  49. V. Tserki, N.E. Zafeiropoulos, F. Simon, C. Panayiotou, Composites Part A 36, 1110 (2005).

    Google Scholar 

  50. M.N. Belgacem, A. Gandini, Compos. Interfaces 12, 41 (2005).

    Google Scholar 

  51. H.L. Bos, J. Mussig, M.J.A. van den Oever, Composites Part A 37, 1591 (2006).

    Google Scholar 

  52. T. Nishino, N. Arimoto, Biomacromolecules 8, 2712 (2007).

    Google Scholar 

  53. C. Qin, N. Soykeabkaew, N. Xiuyuan, T. Peijs, Carbohydr. Polym. 71, 458 (2008).

    Google Scholar 

  54. N. Soykeabkaew, N. Arimoto, T. Nishino, T. Peijs, Compos. Sci. Technol. 68, 2201 (2008).

    Google Scholar 

  55. N. Soykeabkaew, C. Sian, S. Gea, T. Nishino, T. Peijs, Cellulose 16, 435 (2009).

    Google Scholar 

  56. S. Goutianos, T. Peijs, Adv. Compos. Lett. 12, 237 (2003).

    Google Scholar 

  57. S. Goutianos, T. Peijs, B. Nystrom, M. Skrifvars, Appl. Compos. Mater. 13, 199 (2006).

    Google Scholar 

  58. B. Madsen, P. Hoffmeyer, H. Lilholt, Composites Part A 38, 2204 (2007).

    Google Scholar 

  59. M.J.A. van den Oever, H.L. Bos, Adv. Compos. Lett. 7, 81 (1998).

    Google Scholar 

  60. J. Andersons, E. Sparnins, R. Joffe, L. Wallström, Compos. Sci. Technol. 65, 693 (2005).

    Google Scholar 

  61. S. Garkhail, B. Wieland, J. George, N. Soykeabkaew, T. Peijs, J. Mater. Sci. 44, 510 (2009).

    Google Scholar 

  62. S. Gea, E. Bilotti, C.T. Reynolds, N. Soykeabkeaw, T. Peijs, Mater. Lett. (January 2010); DOI:10.1016/j.matlet.2010.01.042.

  63. S.J. Eichhorn, A. Dufresne, M. Aranguren, E. Marcovich, J.R. Capadona, S.J. Rowan, C. Weder, W. Thielemans, et al. J. Mater. Sci. (2009); DOI: 10.1007/s10853-009-3874-0.

  64. I. Sakurada, Y. Nukushina, I. Ito, J. Polym. Sci. 57, 651 (1962).

    Google Scholar 

  65. A. Sturcová, G.R. Davies, S.J. Eichhorn, Biomacromolecules 6, 1055 (2005).

    Google Scholar 

  66. L.M.J. Kroon-Batenburg, J. Kroon, M.G. Northolt, Polym. Commun. 27, 290 (1986).

    Google Scholar 

  67. M. Bergenstråhle, L.A. Berglund, K.J. Mazeau, Phys. Chem. B 111, 9138 (2007).

    Google Scholar 

  68. Y. Nishiyama, J. Wood Sci. 55, 241 (2009).

    Google Scholar 

  69. Q.J. Wu, M. Henriksson, X. Liu, L.A. Berglund, Biomacromolecules 8, 3687 (2007).

    Google Scholar 

  70. S.S. Sternstein, A.J. Zhu, Macromolecules 35, 7262 (2002).

    Google Scholar 

  71. C. Gousse, H. Chanzy, G. Excoffier, L. Soubeyranda, E. Fleur, Polymer 43, 2645 (2002).

    Google Scholar 

  72. H. Lonnberg, L. Fogelstrom, M.A.S.A. Samir, L. Berglund, E. Malmström, A. Hult, Eur. Polym. J. 44, 2991 (2008).

    Google Scholar 

  73. M. Bergenstråhle, K. Mazeau, L.A. Berglund, Eur. Polym. J. 44, 3662 (2008).

    Google Scholar 

  74. V. Favier, H. Chanzy, J.Y. Cavaille, Macromolecules 28, 6365 (1995).

    Google Scholar 

  75. V. Favier, G.R. Canova, J.Y. Cavaille, H. Chanzy, A. Dufresne, C. Gauthier, Polym. Adv. Technol. 6, 351 (1995).

    Google Scholar 

  76. M.A.S.A. Samir, F. Alloin, A. Dufresne, Biomacromolecules 6, 612 (2005).

    Google Scholar 

  77. A.R. Turbak, F.W. Snyder, K.R. Sandberg, J. Appl. Polym. Sci. 37, 813 (1983).

    Google Scholar 

  78. A.N. Nakagaito, H. Yano, Appl. Phys. A 80, 155 (2005).

    Google Scholar 

  79. M. Henriksson, G. Henriksson, L.A. Berglund, T. Lindström, Eur. Polym. J. 43, 3434 (2007).

    Google Scholar 

  80. L. Wågberg, G. Decher, M. Norgren, T. Lindström, M. Ankerfors, K. Axnas, Langmuir 24, 784 (2008).

    Google Scholar 

  81. E.L. Hult, T. Iversen, J. Sugiyama, Cellulose 10, 103 (2003).

    Google Scholar 

  82. T. Saito, M. Hirota, N. Tamura, S. Kimura, H. Fukuzumi, L. Heux, A. Isogai, Biomacromolecules 10, 1992 (2009).

    Google Scholar 

  83. M. Henriksson, L.A. Berglund, P. Isaksson, T. Lindstrom, T. Nishino, Biomacromolecules 9, 1579 (2008).

    Google Scholar 

  84. J. Bodig, B.A. Jayne, Mechanics of Wood and Wood Composites (Krieger Publishing, Florida, 1993), p. 525.

  85. A. Mihranyan, A.P. Llagostera, R. Karmhag, M. Strømmec, R. Ek, Int. J. Pharm. 269, 433 (2004).

    Google Scholar 

  86. M. Bergenstrahle, J. Wohlert, P.T. Larsson, K. Mazeau, L.A. Berglund, J. Phys. Chem. B 112, 2590 (2008).

    Google Scholar 

  87. M. Nogi, K. Abe, K. Handa, F. Nakatsubo, S. Ifuku, H. Yano, Appl. Phys. Lett. 89, 233123 (2006).

    Google Scholar 

  88. M. Henriksson, L.A. Berglund, J. Appl. Polym. Sci. 106, 2817 (2007).

    Google Scholar 

  89. A. Dufresne, D. Dupeyre, M.R. Vignon, J. Appl. Polym. Sci. 76, 2080 (2000).

    Google Scholar 

  90. A.J. Svagan, M.A.S.A. Samir, L.A. Berglund, Biomacromolecules 8, 2556 (2007).

    Google Scholar 

  91. Q. Zhou, E. Malm, H. Nilsson, P.T. Larsson, T. Iversen, L.A. Berglund, V. Bulone, Soft Matter 5, 4124 (2009).

    Google Scholar 

  92. M. Nogi, S. Ifuku, K. Abe, K. Handa, A.N. Nakagaito, H. Yano, Appl. Phys. Lett. 88, 13 (2006).

    Google Scholar 

  93. R. Hori, M. Wada, Cellulose 12, 479 (2005).

    Google Scholar 

  94. M.J. Antal, G. Varhegyi, E. Jakab, Ind. Eng. Chem. Res. 37, 1267 (1998).

    Google Scholar 

  95. H. Fukuzumi, T. Saito, T. Wata, Y. Kumamoto, A. Isogai, Biomacromolecules 10, 162 (2009).

    Google Scholar 

  96. A.J. Svagan, M.A.S.A. Samir, L.A. Berglund, Adv. Mater. 20, 1263 (2008).

    Google Scholar 

  97. A.C. Pierre, G.M. Pajonk, Chem. Rev. 102, 4243 (2002).

    Google Scholar 

  98. M. Pääkkö, J. Vapaavuori, R. Silvennoinen, H. Kosonen, M. Ankerfors, T. Lindstrom, L.A. Berglund, O. Ikkala, Soft Matter 4, 2492 (2008).

    Google Scholar 

  99. A. Mihranyan, L. Nyholm, A.E.G. Bennett, M. Stromme, J. Phys. Chem. B 112, 12249 (2008).

    Google Scholar 

  100. G. Nystrom, A. Razaq, M. Stromme, L. Nyholm, A. Mihranyan, Nano Lett. 9, 3635 (2009).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berglund, L.A., Peijs, T. Cellulose Biocomposites—From Bulk Moldings to Nanostructured Systems. MRS Bulletin 35, 201–207 (2010). https://doi.org/10.1557/mrs2010.652

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2010.652

Navigation