Skip to main content

Advertisement

Log in

In vitro and in vivo biocompatibility of polyurethanes synthesized with castor oil polyols for biomedical devices

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Polyurethanes (PUs) were synthesized with polyols derived from castor oil and isophorone diisocyanate. The materials were evaluated for their mechanical properties using stress—strain curves, thermogravimetric analysis, differential scanning calorimetry, and contact angle analysis. The biological response of the materials was evaluated by determining their cell viability in vitro, antimicrobial activity against Escherichia coli and Pseudomonas aeruginosa, and biological response in vivo of PUs by means of implanting them in Wistar rats. The cell proliferation on the materials was analyzed using mouse fibroblast L929, human fibroblast MRC-5, and adult human dermal fibroblast (HDFa) cells by the ISO 10993-5 method. The materials showed no toxic effects and promoted cell proliferation. Experiments performed in vivo for 30 days in mice showed that the materials neither affected the wound healing process nor caused adverse effects or severe injuries in the dorsal mid-cervical tissue or organs on histological evaluation. PUs synthesized can be used in biomedical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. R.R. Vogels, A. Lambertz, P. Schuster, S. Jockenhoevel, N.D. Bouvy, C. Disselhorst-Klug, U.P. Neumann, U. Klinge, and C.D. Klink: Biocompatibility and biomechanical analysis of elastic TPU threads as new suture material. J. Biomed. Mater. Res., Part B 105, 99 (2017).

    Article  CAS  Google Scholar 

  2. L.A. Israelsson and D. Millbourn: Closing midline abdominal incisions. Langenbeck’s Arch. Surg. 397, 1201 (2012).

    Article  Google Scholar 

  3. G. Zhang, T. Ren, S. Zhang, X. Zeng, and E. van der Heide: Study on the tribological behavior of surgical suture interacting with a skin substitute by using a penetration friction apparatus. Colloids Surf., B 162, 228 (2018).

    Article  CAS  Google Scholar 

  4. F. Arévalo, Y.L. Uscátegui, L. Díaz, M. Cobo, and M.F. Valero: Effect of the incorporation of chitosan on the physico-chemical, mechanical properties and biological activity on a mixture of polycaprolactone and polyurethanes obtained from castor oil. J. Biomater. Appl. 31, 708 (2016).

    Article  CAS  Google Scholar 

  5. L. Vannozzi, L. Ricotti, T. Santaniello, T. Terencio, R. Oropesa-Nunez, C. Canale, F. Borghi, A. Menciassi, and C. Lenardi: 3D porous polyurethanes featured by different mechanical properties: Characterization and interaction with skeletal muscle cells. J. Mech. Behav. Biomed. Mater. 75, 147 (2017).

    Article  CAS  Google Scholar 

  6. M. Meskinfam, S. Bertoldi, N. Albanese, A. Cerri, M.C. Tanzi, R. Imani, N. Baheiraei, M. Farokhi, and S. Farè: Polyurethane foam/nano hydroxyapatite composite as a suitable scaffold for bone tissue regeneration. Mater. Sci. Eng., C 82, 130 (2018).

    Article  CAS  Google Scholar 

  7. H. Park, M.S. Gong, J.H. Park, S.I. Moon, I.B. Wall, H.W. Kim, J.H. Lee, and J.C. Knowles: Silk fibroin-polyurethane blends: Physical properties and effect of silk fibroin content on viscoelasticity, biocompatibility and myoblast differentiation. Acta Biomater. 9, 8962 (2013).

    Article  CAS  Google Scholar 

  8. H.Y. Mi, X. Jing, B.S. Hagerty, G. Chen, A. Huang, and L.S. Turng: Post-crosslinkable biodegradable thermoplastic polyurethanes: Synthesis, and thermal, mechanical, and degradation properties. Mater. Des. 127, 106 (2017).

    Article  CAS  Google Scholar 

  9. A. Solanki, M. Das, and S.A. Thakore: A review on carbohydrate embedded polyurethanes: An emerging area in the scope of biomedical applications. Carbohydr. Polym. 181, 1003 (2018).

    Article  CAS  Google Scholar 

  10. L. Da, M. Gong, A. Chen, Y. Zhang, Y. Huang, Z. Guo, S. Li, J. Li-Ling, L. Zhang, and H. Xie: Composite elastomeric polyurethane scaffolds incorporating small intestinal submucosa for soft tissue engineering. Acta Biomater. 59, 45 (2017).

    Article  CAS  Google Scholar 

  11. F. Zia, K.M. Zia, M. Zuber, S. Tabasum, and S. Rehman: Heparin based polyurethanes: A state-of-the-art review. Int. J. Biol. Macromol. 84, 101 (2016).

    Article  CAS  Google Scholar 

  12. M. Shahrousvand, G.M.M. Sadeghi, E. Shahrousvand, M. Ghollasi, and A. Salimi: Superficial physicochemical properties of polyurethane biomaterials as osteogenic regulators in human mesenchymal stem cells fates. Colloids Surf., B 156, 292 (2017).

    Article  CAS  Google Scholar 

  13. T. Laube, J. Weisser, S. Berger, S. Börner, S. Bischoff, H. Schubert, M. Gajda, R. Bräuer, and M. Schnabelrauch: In situ foamable, degradable polyurethane as biomaterial for soft tissue repair. Mater. Sci. Eng., C 78, 163 (2017).

    Article  CAS  Google Scholar 

  14. C. Gamerith, E. Herrero Acero, A. Pellis, A. Ortner, R. Vielnascher, D. Luschnig, B. Zartl, K. Haernvall, S. Zitzenbacher, G. Strohmeier, O. Hoff, G. Steinkellner, K. Gruber, D. Ribitsch, and G.M. Guebitz: Improving enzymatic polyurethane hydrolysis by tuning enzyme sorption. Polym. Degrad. Stab. 132, 69 (2016).

    Article  CAS  Google Scholar 

  15. W.S. Ng, C.S. Lee, C.H. Chuah, and S.F. Cheng: Preparation and modification of water-blown porous biodegradable polyurethane foams with palm oil-based polyester polyol. Ind. Crops Prod. 97, 65 (2017).

    Article  CAS  Google Scholar 

  16. P. Jutrzenka Trzebiatowska, A. Santamaria Echart, T. Calvo Correas, A. Eceiza, and J. Datta: The changes of crosslink density of polyurethanes synthesised with using recycled component. Chemical structure and mechanical properties investigations. Prog. Org. Coat. 115, 41 (2018).

    Article  CAS  Google Scholar 

  17. O. Gil-Castell, J.D. Badia, I. Ontoria-Oviedo, D. Castellano, B. Marco, A. Rabal, J.J. Bou, A. Serra, L. Monreal, M. Blanes, P. Sepúlveda, and A. Ribes-Greus: In vitro validation of biomedical polyester-based scaffolds: Poly(lactide-co-glycolide) as model-case. Polym. Test. 66, 256 (2018).

    Article  CAS  Google Scholar 

  18. M.A. Mekewi, A.M. Ramadan, F.M. ElDarse, M.H. Abdel Rehim, N.A. Mosa, and M.A. Ibrahim: Preparation and characterization of polyurethane plasticizer for flexible packaging applications: Natural oils affirmed access. Egypt. J. Pet. 26, 9 (2017).

    Article  Google Scholar 

  19. C. Zhang, T.F. Garrison, S.A. Madbouly, and M.R. Kessler: Recent advances in vegetable oil-based polymers and their composites. Prog. Polym. Sci. 71, 91 (2017).

    Article  CAS  Google Scholar 

  20. H. Madra, B. Tantekin-Ersolmaz, and F.S. Guner: Monitoring of oil-based polyurethane synthesis by FTIR-ATR. Polym. Test. 28, 773 (2009).

    Article  CAS  Google Scholar 

  21. D.P. Pfister, Y. Xia, and R.C. Larock: Recent advances in vegetable oil-based polyurethanes. ChemSusChem 4, 703 (2011).

    Article  CAS  Google Scholar 

  22. Z.S. Petrović, J. Milic, F. Zhang, and J. Ilavsky: Fast-responding bio-based shape memory thermoplastic polyurethanes. Polymer 121, 26 (2017).

    Article  CAS  Google Scholar 

  23. G. Lligadas, J.C. Ronda, M. Galià, and V. Cádiz: Plant oils as platform chemicals for polyurethane synthesis: Current state-of-the-art. Biomacromolecules 11, 2825 (2010).

    Article  CAS  Google Scholar 

  24. S. Jayavani, S. Sunanda, T.O. Varghese, and S.K. Nayak: Synthesis and characterizations of sustainable polyester polyols from non-edible vegetable oils: Thermal and structural evaluation. J. Cleaner Prod. 162, 795 (2017).

    Article  CAS  Google Scholar 

  25. E.A. Ismail, A.M. Motawie, and E.M. Sadek: Synthesis and characterization of polyurethane coatings based on soybean oil—polyester polyols. Egypt. J. Pet. 20, 1 (2011).

    Article  CAS  Google Scholar 

  26. T. Calvo-Correas, A. Santamaria-Echart, A. Saralegi, L. Martin, A. Valea, M.A. Corcuera, and A. Eceiza: Thermally-responsive biopolyurethanes from a biobased diisocyanate. Eur. Polym. J. 70, 173 (2015).

    Article  CAS  Google Scholar 

  27. Y.L. Uscátegui, L.E. Díaz, and M.F. Valero: Revisão. Quim. Nova 41, 434 (2018).

    Google Scholar 

  28. L.C. Meneguelli de Souza, L.P. de Carvalho, J.S. Araújo, E.J.T. de Melo, and O.L. Machado: Cell toxicity by ricin and elucidation of mechanism of Ricin inactivation. Int. J. Biol. Macromol. 113, 821 (2018).

    Article  CAS  Google Scholar 

  29. A. Hejna, M. Kirpluks, P. Kosmela, U. Cabulis, J. Haponiuk, and L. Piszczyk: The influence of crude glycerol and castor oil-based polyol on the structure and performance of rigid polyurethane-polyisocyanurate foams. Ind. Crops Prod. 95, 113 (2017).

    Article  CAS  Google Scholar 

  30. T.S. Omonov, E. Kharraz, and J.M. Curtis: Camelina (Camelina Sativa) oil polyols as an alternative to Castor oil. Ind. Crops Prod. 107, 378 (2017).

    Article  CAS  Google Scholar 

  31. Y. Uscátegui, F. Arévalo, L. Díaz, M. Cobo, and M. Valero: Microbial degradation, cytotoxicity and antibacterial activity of polyurethanes based on modified castor oil and polycaprolactone. J. Biomater. Sci., Polym. Ed. 27, 1860 (2016).

    Article  CAS  Google Scholar 

  32. M.R. dos Santos, J.J. Alcaraz-Espinoza, M.M. da Costa, and H.P. de Oliveira: Usnic acid-loaded polyaniline/polyurethane foam wound dressing: Preparation and bactericidal activity. Mater. Sci. Eng., C 89, 33 (2018).

    Article  CAS  Google Scholar 

  33. C. Serrano, L. García-Fernández, J.P. Fernández-Blázquez, M. Barbeck, S. Ghanaati, R. Unger, J. Kirkpatrick, E. Arzt, L. Funk, P. Turón, and A. del Campo: Nanostructured medical sutures with antibacterial properties. Biomaterials 52, 291 (2015).

    Article  CAS  Google Scholar 

  34. M. Fabbri, G. Guidotti, M. Soccio, N. Lotti, M. Govoni, E. Giordano, M. Gazzano, R. Gamberini, B. Rimini, and A. Munari: Novel biocompatible PBS-based random copolymers containing PEG-like sequences for biomedical applications: From drug delivery to tissue engineering. Polym. Degrad. Stab. 153, 53 (2018).

    Article  CAS  Google Scholar 

  35. V. Angeloni, N. Contessi, C. De Marco, S. Bertoldi, M.C. Tanzi, M.G. Daidone, and S.S. Farè: Polyurethane foam scaffold as in vitro model for breast cancer bone metastasis. Acta Biomater. 63, 306 (2017).

    Article  CAS  Google Scholar 

  36. A. Gossart, K.G. Battiston, A. Gand, E. Pauthe, and J.P. Santerre: Mono versus multilayer fibronectin coatings on polar/hydrophobic/ionic polyurethanes: Altering surface interactions with human monocytes. Acta Biomater. 66, 129 (2018).

    Article  CAS  Google Scholar 

  37. J. Zhang, T.M. Woodruff, R.J. Clark, D.J. Martin, and R.F. Minchin: Release of bioactive peptides from polyurethane films in vitro and in vivo: Effect of polymer composition. Acta Biomater. 41, 264 (2016).

    Article  CAS  Google Scholar 

  38. C.S. Carriço, T. Fraga, and V.M. Pasa: Production and characterization of polyurethane foams from a simple mixture of castor oil, crude glycerol and untreated lignin as bio-based polyols. Eur. Polym. J. 85, 53 (2016).

    Article  CAS  Google Scholar 

  39. H. Kim, D.H. Kang, M. Kim, A. Jiao, D.H. Kim, and K.Y. Suh: Patterning methods for polymers in cell and tissue engineering. Ann Biomed Eng. 40, 1339 (2012).

    Article  Google Scholar 

  40. S. Nemir and J.L. West: Synthetic materials in the study of cell response to substrate rigidity. Ann. Biomed. Eng. 38, 2 (2010).

    Article  Google Scholar 

  41. E. Vatankhah, D. Semnani, M.P. Prabhakaran, M. Tadayon, S. Razavi, and S. Ramakrishna: Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds. Acta Biomater. 10, 709 (2014).

    Article  CAS  Google Scholar 

  42. N.O. Alves, G.T. Da Silva, D.M. Weber, C. Luchese, E.A. Wilhelm, and A.R. Fajardo: Chitosan/poly(vinyl alcohol)/bovine bone powder biocomposites: A potential biomaterial for the treatment of atopic dermatitis-like skin lesions. Carbohydr. Polym. 148, 115 (2016).

    Article  CAS  Google Scholar 

  43. Y.L. Uscátegui, S.J. Arévalo-Alquichire, J.A. Gómez-Tejedor, A. Vallés-Lluch, L.E. Díaz, and M.F. Valero: Polyurethane-based bioadhesive synthesized from polyols derived from castor oil (Ricinus communis) and low concentration of chitosan. J. Mater. Res. 32, 3699 (2017).

    Article  CAS  Google Scholar 

  44. Y. Zhou, D. Sheng, X. Liu, C. Lin, F. Ji, I. Dong, S. Xu, and Y. Yang: Synthesis and properties of crosslinking halloysite nanotubes/polyurethane-based solid-solid phase change materials. Sol. Energy Mater. Sol. Cells 174, 84 (2018).

    Article  CAS  Google Scholar 

  45. M. Sáenz-Pérez, E. Lizundia, J.M. Laza, J. García-Barrasa, J.L. Vilas, and L.M. León: Methylene diphenyl diisocyanate (MDI) and toluene diisocyanate (TDI) based polyurethanes: Thermal, shape-memory and mechanical behavior. RSC Adv. 6, 69094 (2016).

    Article  CAS  Google Scholar 

  46. D.N. Coakley, F.M. Shaikh, K. O’Sullivan, E.G. Kavanagh, P.A. Grace, and T.M. McGloughlin: In vitro evaluation of acellular porcine urinary bladder extracellular matrix—A potential scaffold in tissue engineered skin. Wound. Med. 10–11, 9 (2015).

    Article  Google Scholar 

  47. G. Totaro, L. Cruciani, M. Vannini, G. Mazzola, D. Di Gioia, A. Celli, and L. Sisti: Synthesis of castor oil-derived polyesters with antimicrobial activity. Eur. Polym. J. 56, 174 (2014).

    Article  CAS  Google Scholar 

  48. H. Fu, Y. Wang, X. Li, and W. Chen: Synthesis of vegetable oil-based waterborne polyurethane/silver-halloysite antibacterial nanocomposites. Compos. Sci. Technol. 126, 86 (2016).

    Article  CAS  Google Scholar 

  49. A. Muxika, A. Etxabide, J. Uranga, P. Guerrero, and K. de la Caba: Chitosan as a bioactive polymer: Processing, properties and applications. Int. J. Biol. Macromol. 105, 1358 (2017).

    Article  CAS  Google Scholar 

  50. K.N. Gibson-Corley, A.K. Olivier, and D.K. Meyerholz: Principles for valid histopathologic scoring in research. Vet. Pathol. 50, 1007 (2013).

    Article  CAS  Google Scholar 

  51. J.A. Inzana, E.M. Schwarz, S.L. Kates, and H.A. Awad: Biomaterials approaches to treating implant-associated osteomyelitis. Biomaterials 81, 58 (2016).

    Article  CAS  Google Scholar 

  52. L.P. Gabriel, M.E.M. Santos, A.L. Jardini, G.N.T. Bastos, C.G.T. Dias, T.T.J. Webster, and R. Maciel Filho: Bio-based polyurethane for tissue engineering applications: How hydroxyapatite nanoparticles influence the structure, thermal and biological behavior of polyurethane composites. Nanomedicine 13, 201 (2017).

    Article  CAS  Google Scholar 

  53. M.F. Valero and Y. Ortegón: Polyurethane elastomers-based modified castor oil and poly(ε-caprolactone) for surface-coating applications: Synthesis, characterization, and in vitro degradation. J. Elastomers Plast. 47, 360 (2015).

    Article  CAS  Google Scholar 

  54. M. Rezvanain, N. Ahmad, M.C.I. Mohd Amin, and S.F. Ng: Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. Int. J. Biol. Macromol. 97, 131 (2017).

    Article  CAS  Google Scholar 

  55. D. Wu, H. Cui, J. Zhu, X. Qin, and T. Xie: Novel amino acid based nanogel conjugated suture for antibacterial application. J. Mater. Chem. B 4, 2606 (2016).

    Article  CAS  Google Scholar 

  56. B. Garg, V. Sandhu, N. Sood, A. Sood, and V. Malhotra: Histopathological analysis of chronic gastritis and correlation of pathological features with each other and with endoscopic findings. Pol. J. Pathol. 63, 172 (2012).

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Universidad de La Sabana for financing the ING-176-2016 research project and Colciencias for the doctoral grant-loan with the call number 617-2 in 2014. We would also like to thank the Bioterium of the National Institute of Health of Colombia and the Corporación Patología Veterinaria (Corpavet®) for collaboration in conducting the in vivo assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel F. Valero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uscátegui, Y.L., Díaz, L.E. & Valero, M.F. In vitro and in vivo biocompatibility of polyurethanes synthesized with castor oil polyols for biomedical devices. Journal of Materials Research 34, 519–531 (2019). https://doi.org/10.1557/jmr.2018.448

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.448

Navigation