Skip to main content

Advertisement

Log in

Advanced materials for flexible electrochemical energy storage devices

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Flexibility is a key parameter of device mechanical robustness. The most profound challenge for the realization of flexible electronics is associated with the relatively low flexibility of power sources. In this article, two kinds of energy applications, which have gained increasing attention in the field of flexibility in recent years, are introduced: the lithium-ion batteries and the supercapacitors. We overview the latest progresses in flexible materials and manufacturing technology. The performances of the energy devices based on flexible materials are introduced. The advantages and disadvantages of different manufacturing processes are discussed systematically. We then focus on current technical difficulties and future prospects of research in flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. G. Zhou, F. Li, and H.M. Cheng: Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7, 1307 (2014).

    Article  CAS  Google Scholar 

  2. X. Wang, X. Lu, B. Liu, D. Chen, Y. Tong, and G. Shen: Flexible energy-storage devices: Design consideration and recent progress. Adv. Mater. 26, 4763 (2014).

    Article  CAS  Google Scholar 

  3. J. Wilson: High time for wearable technology as apple watch is finally unveiled. Eng. Technol. 10, 20 (2015).

    Article  Google Scholar 

  4. X.Y. Yu, L. Yu, and X.W.D. Lou: Metal sulfide hollow nanostructures for electrochemical energy storage. Adv. Energy Mater. 6, 1501333 (2016).

    Article  CAS  Google Scholar 

  5. W. Li, M. Li, Z. Yang, J. Xu, X. Zhong, J. Wang, and L. Gu: Carbon-coated germanium nanowires on carbon nanofibers as self-supported electrodes for flexible lithium-ion batteries. Small 11, 2762 (2015).

    Article  CAS  Google Scholar 

  6. J. He, Y. Chen, W. Lv, K. Wen, P. Li, Z. Wang, W. Zhang, W. Qin, and W. He: Three-dimensional hierarchical graphene-CNT@Se: A highly efficient freestanding cathode for Li–Se batteries. ACS Energy Lett. 1, 16 (2016).

    Article  CAS  Google Scholar 

  7. Z. Wang, M. Liu, G. Wei, P. Han, X. Zhao, J. Liu, and J. Zhang: Hierarchical self-supported C@TiO2–MoS2 core–shell nanofiber mats as flexible anode for advanced flithium ion batteries. Appl. Surf. Sci. 423, 375 (2017).

    Article  CAS  Google Scholar 

  8. Y. Chao, R. Jalili, Y. Ge, C. Wang, T. Zheng, K. Shu, and G.G. Wallace: Self-assembly of flexible free-standing 3D porous MoS2-reduced graphene oxide structure for high-performance lithium-ion batteries. Adv. Funct. Mater. 27, 1700234 (2017).

    Article  CAS  Google Scholar 

  9. M.M. Islam, C.M. Subramaniyam, T. Akhter, S.N. Faisal, A.I. Minett, H.K. Liu, and S.X. Dou: Three dimensional cellular architecture of sulfur doped graphene: Self-standing electrode for flexible supercapacitors, lithium ion and sodium ion batteries. J. Mater. Chem. A 5, 5290 (2017).

    Article  CAS  Google Scholar 

  10. D.J. Joe, S. Kim, J.H. Park, D.Y. Park, H.E. Lee, T.H. Im, and K.J. Lee: Laser–material interactions for flexible applications. Adv. Mater. 29, 1606586 (2017).

    Article  CAS  Google Scholar 

  11. Y. Wang, N. Xiao, Z. Wang, Y. Tang, H. Li, M. Yu, and J. Qiu: Ultrastable and high-capacity carbon nanofiber anode derived from pitch/polyacrylonitrile hybrid for flexible sodium-ion batteries. Carbon 135, 187 (2018).

    Article  CAS  Google Scholar 

  12. T. Jiang, F. Bu, X. Feng, I. Shakir, G. Hao, and Y. Xu: Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery. ACS Nano 11, 5140 (2017).

    Article  CAS  Google Scholar 

  13. G. Li, X. Wang, M.H. Seo, M. Li, L. Ma, Y. Yuan, and Z. Chen: Chemisorption of polysulfides through redox reactions with organic molecules for lithium–sulfur batteries. Nat. Commun. 9, 705 (2018).

    Article  CAS  Google Scholar 

  14. Q. Wu, R. Zhao, X. Zhang, W. Li, R. Xu, G. Diao, and M. Chen: Synthesis of flexible Fe3O4/C nanofibers with buffering volume expansion performance and their application in lithium-ion batteries. J. Power Sources 359, 7 (2017).

    Article  CAS  Google Scholar 

  15. Z. Deng, H. Jiang, Y. Hu, Y. Liu, L. Zhang, H. Liu, and C. Li: 3D ordered macroporous MoS2@C nanostructure for flexible Li-ion batteries. Adv. Mater. 29, 1603020 (2017).

    Article  CAS  Google Scholar 

  16. K. Amin, Q. Meng, A. Ahmad, M. Cheng, M. Zhang, L. Mao, and Z. Wei: A carbonyl compound-based flexible cathode with superior rate performance and cyclic stability for flexible lithium-ion batteries. Adv. Mater. 30, 1703868 (2018).

    Article  CAS  Google Scholar 

  17. H. Zhang, M.Y. Zhou, C.E. Lin, and B.K. Zhu: Progress in polymeric separators for lithium ion batteries. RSC Adv. 5, 89848 (2015).

    Article  CAS  Google Scholar 

  18. L. Yang, Z. Wang, Y. Feng, R. Tan, Y. Zuo, R. Gao, and F. Pan: Flexible composite solid electrolyte facilitating highly stable “soft contacting” Li–Electrolyte interface for solid state lithium-ion batteries. Adv. Energy Mater. 7, 1701437 (2017).

    Article  CAS  Google Scholar 

  19. J. Zhang, C. Ma, Q. Xia, J. Liu, Z. Ding, M. Xu, and W. Wei: Composite electrolyte membranes incorporating viscous copolymers with cellulose for high performance lithium-ion batteries. J. Membr. Sci. 497, 259 (2016).

    Article  CAS  Google Scholar 

  20. H. Xie, Y. Liao, P. Sun, T. Chen, M. Rao, and W. Li: Investigation on polyethylene-supported and nano-SiO2 doped poly(methyl methacrylate-co-butyl acrylate) based gel polymer electrolyte for high voltage lithium ion battery. Electrochim. Acta 127, 327 (2014).

    Article  CAS  Google Scholar 

  21. S.H. Kim, K.H. Choi, S.J. Cho, J. Yoo, S.S. Lee, and S.Y. Lee: Flexible/shape-versatile, bipolar all-solid-state lithium-ion batteries prepared by multistage printing. Energy Environ. Sci. 11, 321–330 (2018).

    Article  CAS  Google Scholar 

  22. C. Shi, J. Zhu, X. Shen, F. Chen, F. Ning, H. Zhang, and J. Zhao: Flexible inorganic membranes used as a high thermal safety separator for the lithium-ion battery. RSC Adv. 8, 4072 (2018).

    Article  CAS  Google Scholar 

  23. A. Manthiram, X. Yu, and S. Wang: Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    Article  CAS  Google Scholar 

  24. S. Faraji and F.N. Ani: The development supercapacitor from activated carbon by electroless plating—A review. Renewable Sustainable Energy Rev. 42, 823 (2015).

    Article  CAS  Google Scholar 

  25. X. Li, J. Tao, W. Guo, X. Zhang, J. Luo, M. Chen, and C. Pan: A self-powered system based on triboelectric nanogenerators and supercapacitors for metal corrosion prevention. J. Mater. Chem. A 3, 22663 (2015).

    Article  CAS  Google Scholar 

  26. G. Gao, H.B. Wu, S. Ding, L.M. Liu, and X.W.D. Lou: Hierarchical NiCo2O4 nanosheets grown on Ni nanofoam as high-performance electrodes for supercapacitors. Small 11, 804 (2015).

    Article  CAS  Google Scholar 

  27. C. Lekakou, A. Sorniotti, C. Lei, F. Markoulidis, P.C. Wilson, A. Santucci, and S. Khalil: AUTOSUPERCAP: Development of high energy and high power density supercapacitor cells. In Electric Vehicle Batteries: Moving from Research Towards Innovation (Springer, Cham, 2015); p. 33.

    Chapter  Google Scholar 

  28. K.R. Dai, X.F. Wang, W.S. Lv, and Z. You: Study on a planar interdigitated MEMS supercapacitor using modeling and simulation method. Key Eng. Mater. 645, 513 (2015).

    Article  Google Scholar 

  29. A. Ramadoss, K.Y. Yoon, M.J. Kwak, S.I. Kim, S.T. Ryu, and J.H. Jang: Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-Dimensional-graphene/graphite-paper. J. Power Sources 337, 159 (2017).

    Article  CAS  Google Scholar 

  30. A. Liu, P. Kovacik, N. Peard, W. Tian, H. Goktas, J. Lau, and K.K. Gleason: Monolithic flexible supercapacitors integrated into single sheets of paper and membrane via vapor printing. Adv. Mater. 29 (2017).

  31. H. Jiang, X. Cai, Y. Qian, C. Zhang, L. Zhou, W. Liu, and W. Huang: V2O5 embedded in vertically aligned carbon nanotube arrays as free-standing electrodes for flexible supercapacitors. J. Mater. Chem. A 5, 23727 (2017).

    Article  CAS  Google Scholar 

  32. W. Ma, S. Chen, S. Yang, W. Chen, W. Weng, Y. Cheng, and M. Zhu: Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density. Carbon 113, 151 (2017).

    Article  CAS  Google Scholar 

  33. L. Wang, G. Zhang, X. Zhang, H. Shi, W. Zeng, H. Zhang, and H. Duan: Porous ultrathin carbon nanobubbles formed carbon nanofiber webs for high-performance flexible supercapacitors. J. Mater. Chem. A 5, 14801 (2017).

    Article  CAS  Google Scholar 

  34. C. Lu, D. Wang, J. Zhao, S. Han, and W. Chen: A continuous carbon nitride polyhedron assembly for high-performance flexible supercapacitors. Adv. Funct. Mater. 27, 1606219 (2017).

    Article  CAS  Google Scholar 

  35. X. Zhang, M. Kar, T.C. Mendes, Y. Wu, and D.R. MacFarlane: Supported ionic liquid gel membrane electrolytes for flexible supercapacitors. Adv. Energy Mater. 8, 1702702 (2018).

    Article  CAS  Google Scholar 

  36. Y. Zou, Z. Zhang, W. Zhong, and W. Yang: Hydrothermal direct synthesis of polyaniline, graphene/polyaniline and N-doped graphene/polyaniline hydrogels for high performance flexible supercapacitors. J. Mater. Chem. A 6, 9245 (2018).

    Article  CAS  Google Scholar 

  37. J. Zhang, Y. Li, Y. Zhang, X. Qian, R. Niu, R. Hu, and J. Zhu: The enhanced adhesion between overlong TiNxOy/MnO2 nanoarrays and Ti substrate: Towards flexible supercapacitors with high energy density and long service life. Nano Energy 43, 91 (2018).

    Article  CAS  Google Scholar 

  38. L.H. Saw, Y. Ye, and A.A. Tay: Integration issues of lithium-ion battery into electric vehicles battery pack. J. Cleaner Prod. 113, 1032 (2016).

    Article  CAS  Google Scholar 

  39. J. Muldoon, C.B. Bucur, N. Boaretto, T. Gregory, and V. Di Noto: Polymers: Opening doors to future batteries. Polym. Rev. 55, 208 (2015).

    Article  CAS  Google Scholar 

  40. W. Qiu, J. Jiao, J. Xia, H. Zhong, and L. Chen: A self-standing and flexible electrode of yolk–shell CoS2 spheres encapsulated with nitrogen-doped graphene for high-performance lithium-ion batteries. Chem.–Eur. J. 21, 4359 (2015).

    Article  CAS  Google Scholar 

  41. M.S. Balogun, M. Yu, Y. Huang, C. Li, P. Fang, Y. Liu, and Y. Tong: Binder-free Fe2N nanoparticles on carbon textile with high power density as novel anode for high-performance flexible lithium ion batteries. Nano Energy 11, 348 (2015).

    Article  CAS  Google Scholar 

  42. X. Wang, K. Jiang, and G. Shen: Flexible fiber energy storage and integrated devices: Recent progress and perspectives. Mater. Today 18, 265 (2015).

    Article  CAS  Google Scholar 

  43. S. Yoon, S. Lee, S. Kim, K.W. Park, D. Cho, and Y. Jeong: Carbon nanotube film anodes for flexible lithium ion batteries. J. Power Sources 279, 495 (2015).

    Article  CAS  Google Scholar 

  44. K. Wang, S. Luo, Y. Wu, X. He, F. Zhao, J. Wang, and S. Fan: Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries. Adv. Funct. Mater. 23, 846 (2013).

    Article  CAS  Google Scholar 

  45. J.W. Hu, Z.P. Wu, S.W. Zhong, W.B. Zhang, S. Suresh, A. Mehta, and N. Koratkar: Folding insensitive, high energy density lithium-ion battery featuring carbon nanotube current collectors. Carbon 87, 292 (2015).

    Article  CAS  Google Scholar 

  46. J. Gao, M. Yoshio, L. Qi, and H. Wang: Solvation effect on intercalation behaviour of tetrafluoroborate into graphite electrode. J. Power Sources 278, 452 (2015).

    Article  CAS  Google Scholar 

  47. K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, and A.A. Firsov: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005).

    Article  CAS  Google Scholar 

  48. R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati: The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271 (2015).

    Article  CAS  Google Scholar 

  49. F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, and V. Pellegrini: Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015).

    Article  CAS  Google Scholar 

  50. H. Tian, Y. Shu, Y.L. Cui, W.T. Mi, Y. Yang, D. Xie, and T.L. Ren: Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale 6, 699 (2014).

    Article  CAS  Google Scholar 

  51. X. Bai, Y. Yu, H.H. Kung, B. Wang, and J. Jiang: Si@SiOx/graphene hydrogel composite anode for lithium-ion battery. J. Power Sources 306, 42 (2016).

    Article  CAS  Google Scholar 

  52. L. Oakes, A.P. Cohn, A.S. Westover, and C.L. Pint: Electrophoretic stabilization of freestanding pristine graphene foams with carbon nanotubes for enhanced optical and electrical response. Mater. Lett. 159, 261 (2015).

    Article  CAS  Google Scholar 

  53. X. Yun, J. Wang, L. Shen, H. Dou, and X. Zhang: Three-dimensional graphene nanosheets/carbon nanotube paper as flexible electrodes for electrochemical capacitors. RSC Adv. 5, 22173 (2015).

    Article  CAS  Google Scholar 

  54. Y. Liu, P. Liu, D. Wu, Y. Huang, Y. Tang, Y. Su, and X. Feng: Boron-doped, carbon-coated SnO2/graphene nanosheets for enhanced lithium storage. Chem.–Eur. J. 21, 5617 (2015).

    Article  CAS  Google Scholar 

  55. Y. Hu, X. Li, J. Wang, R. Li, and X. Sun: Free-standing graphene–carbon nanotube hybrid papers used as current collector and binder free anodes for lithium ion batteries. J. Power Sources 237, 41 (2013).

    Article  CAS  Google Scholar 

  56. Y. Chen, K. Fu, S. Zhu, W. Luo, Y. Wang, Y. Li, and V.A. Danner: Reduced graphene oxide films with ultrahigh conductivity as Li-ion battery current collectors. Nano Lett. 16, 3616 (2016).

    Article  CAS  Google Scholar 

  57. N. Li, Z. Chen, W. Ren, F. Li, and H.M. Cheng: Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc. Natl. Acad. Sci. U. S. A 109, 17360 (2012).

    Article  CAS  Google Scholar 

  58. T. Hu, X. Sun, H. Sun, M. Yu, F. Lu, C. Liu, and J. Lian: Flexible free-standing graphene–TiO2 hybrid paper for use as lithium ion battery anode materials. Carbon 51, 322 (2013).

    Article  CAS  Google Scholar 

  59. P. Zhang, J. Qiu, Z. Zheng, G. Liu, M. Ling, W. Martens, and S. Zhang: Free-standing and bendable carbon nanotubes/TiO2 nanofibres composite electrodes for flexible lithium ion batteries. Electrochim. Acta 104, 41 (2013).

    Article  CAS  Google Scholar 

  60. I. Kuribayashi: Characterization of composite cellulosic separators for rechargeable lithium-ion batteries. J. Power Sources 63, 87 (1996).

    Article  CAS  Google Scholar 

  61. S. Leijonmarck, A. Cornell, G. Lindbergh, and L. Wågberg: Flexible nano-paper-based positive electrodes for Li-ion batteries—Preparation process and properties. Nano Energy 2, 794 (2013).

    Article  CAS  Google Scholar 

  62. L. Jabbour, M. Destro, D. Chaussy, C. Gerbaldi, N. Penazzi, S. Bodoardo, and D. Beneventi: Flexible cellulose/LiFePO4 paper-cathodes: Toward eco-friendly all-paper Li-ion batteries. Cellulose 20, 571 (2013).

    Article  CAS  Google Scholar 

  63. L. Jabbour, M. Destro, C. Gerbaldi, D. Chaussy, N. Penazzi, and D. Beneventi: Aqueous processing of cellulose based paper-anodes for flexible Li-ion batteries. J. Mater. Chem. 22, 3227 (2012).

    Article  CAS  Google Scholar 

  64. B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, and G. Shen: Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 12, 3005 (2012).

    Article  CAS  Google Scholar 

  65. X. Zhu, Y. Zhu, S. Murali, M.D. Stoller, and R.S. Ruoff: Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5, 3333 (2011).

    Article  CAS  Google Scholar 

  66. C.H. Tsao and P.L. Kuo: Poly(dimethylsiloxane) hybrid gel polymer electrolytes of a porous structure for lithium ion battery. J. Membr. Sci. 489, 36 (2015).

    Article  CAS  Google Scholar 

  67. R.S. Juang, C.T. Hsieh, P.A. Chen, and Y.F. Chen: Microwave-assisted synthesis of titania coating onto polymeric separators for improved lithium-ion battery performance. J. Power Sources 286, 526 (2015).

    Article  CAS  Google Scholar 

  68. Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, and C. Chen: Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 208, 210 (2012).

    Article  CAS  Google Scholar 

  69. P.V. Wright: Electrical conductivity in ionic complexes of poly(ethylene oxide). Br. Polym. J. 7, 319 (1975).

    Article  CAS  Google Scholar 

  70. C. Berthier, W. Gorecki, M. Minier, M.B. Armand, J.M. Chabagno, and P. Rigaud: Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ionics 11, 91 (1983).

    Article  CAS  Google Scholar 

  71. M. Yang and J. Hou: Membranes in lithium ion batteries. Membranes 2, 367 (2012).

    Article  CAS  Google Scholar 

  72. S.M. Seidel, S. Jeschke, P. Vettikuzha, and H.D. Wiemhöfer: PVDF-HFP/ether-modified polysiloxane membranes obtained via airbrush spraying as active separators for application in lithium ion batteries. Chem. Commun. 51, 12048 (2015).

    Article  CAS  Google Scholar 

  73. A. Venault, Y.H. Liu, J.R. Wu, H.S. Yang, Y. Chang, J.Y. Lai, and P. Aimar: Low-biofouling membranes prepared by liquid-induced phase separation of the PVDF/polystyrene-b-poly(ethylene glycol) methacrylate blend. J. Membr. Sci. 450, 340 (2014).

    Article  CAS  Google Scholar 

  74. H.Q. Liang, Q.Y. Wu, L.S. Wan, X.J. Huang, and Z.K. Xu: Thermally induced phase separation followed by in situ sol–gel process: A novel method for PVDF/SiO2 hybrid membranes. J. Membr. Sci. 465, 56 (2014).

    Article  CAS  Google Scholar 

  75. N.H. Idris, M.M. Rahman, J.Z. Wang, and H.K. Liu: Microporous gel polymer electrolytes for lithium rechargeable battery application. J. Power Sources 201, 294 (2012).

    Article  CAS  Google Scholar 

  76. A. Zalewska, A. Bernakiewicz, M. Bystrzycka, M. Marczewski, and N. Langwald: Properties of gel electrolytes based on PVdF/HFP containing anion receptors. Int. J. Hydrogen Energy 39, 2977 (2014).

    Article  CAS  Google Scholar 

  77. G. Ding, B. Qin, Z. Liu, J. Zhang, B. Zhang, P. Hu, and G. Cui: A polyborate coated cellulose composite separator for high performance lithium ion batteries. J. Electrochem. Soc. 162, A834 (2015).

    Article  CAS  Google Scholar 

  78. K. Azzaoui, E. Mejdoubi, A. Lamhamdi, S. Zaoui, M. Berrabah, A. Elidrissi, and S.S. Al-Deyab: Structure and properties of hydroxyapatite/hydroxyethyl cellulose acetate composite films. Carbohydr. Polym. 115, 170 (2015).

    Article  CAS  Google Scholar 

  79. M.X. Li, W. Wang, X.Y.Q. Yang, Z. Chang, Y.P. Wu, and R. Holze: A dense cellulose-based membrane as a renewable host for gel polymer electrolyte of lithium ion batteries. J. Membr. Sci. 476, 112 (2015).

    Article  CAS  Google Scholar 

  80. Y. Xu, Y. Zhu, F. Han, C. Luo, and C. Wang: 3D Si/C fiber paper electrodes fabricated using a combined electrospray/electrospinning technique for Li-ion batteries. Adv. Energy Mater. 5, 1400753 (2015).

    Article  CAS  Google Scholar 

  81. D. Lei, B. Qu, H.T. Lin, and T. Wang: Facile approach to prepare porous GeO2/SnO2 nanofibers via a single spinneret electrospinning technique as anodes for lithium-ion batteries. Ceram. Int. 41, 10308 (2015).

    Article  CAS  Google Scholar 

  82. L. Qiu, Z. Shao, M. Yang, W. Wang, F. Wang, L. Xie, and Y. Zhang: Electrospun carboxymethyl cellulose acetate butyrate (CMCAB) nanofiber for high rate lithium-ion battery. Carbohydr. Polym. 96, 240 (2013).

    Article  CAS  Google Scholar 

  83. B. Weng, F. Xu, M. Alcoutlabi, Y. Mao, and K. Lozano: Fibrous cellulose membrane mass produced via forcespinning® for lithium-ion battery separators. Cellulose 22, 1311 (2015).

    Article  CAS  Google Scholar 

  84. J. Zhang, L. Yue, Q. Kong, Z. Liu, X. Zhou, C. Zhang, and Y. Duan: Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. Sci. Rep. 4, 3935 (2014).

    Article  CAS  Google Scholar 

  85. Q. Xu, Q. Kong, Z. Liu, J. Zhang, X. Wang, R. Liu, and G. Cui: Polydopamine-coated cellulose microfibrillated membrane as high performance lithium-ion battery separator. RSC Adv. 4, 7845 (2014).

    Article  CAS  Google Scholar 

  86. A. Chiappone, J.R. Nair, C. Gerbaldi, E. Zeno, and R. Bongiovanni: Cellulose/acrylate membranes for flexible lithium batteries electrolytes: Balancing improved interfacial integrity and ionic conductivity. Eur. Polym. J. 57, 22 (2014).

    Article  CAS  Google Scholar 

  87. H. Li, J. Song, L. Wang, X. Feng, R. Liu, W. Zeng, and L. Wang: Flexible all-solid-state supercapacitors based on polyaniline orderly nanotubes array. Nanoscale 9, 193 (2017).

    Article  CAS  Google Scholar 

  88. A. Scalia, F. Bella, A. Lamberti, S. Bianco, C. Gerbaldi, E. Tresso, and C.F. Pirri: A flexible and portable powerpack by solid-state supercapacitor and dye-sensitized solar cell integration. J. Power Sources 359, 311 (2017).

    Article  CAS  Google Scholar 

  89. X. Cao, B. Zheng, W. Shi, J. Yang, Z. Fan, Z. Luo, and H. Zhang: Reduced graphene oxide-wrapped MoO3 composites prepared by using metal–organic frameworks as precursor for all-solid-state flexible supercapacitors. Adv. Mater. 27, 4695 (2015).

    Article  CAS  Google Scholar 

  90. J. Xu, D. Wang, Y. Yuan, W. Wei, S. Gu, R. Liu, and W. Xu: Polypyrrole-coated cotton fabrics for flexible supercapacitor electrodes prepared using CuO nanoparticles as template. Cellulose 22, 1355 (2015).

    Article  CAS  Google Scholar 

  91. X. Xiao, T. Li, Z. Peng, H. Jin, Q. Zhong, Q. Hu, and J. Chen: Freestanding functionalized carbon nanotube-based electrode for solid-state asymmetric supercapacitors. Nano Energy 6, 1 (2014).

    Article  CAS  Google Scholar 

  92. J. Zhao, J. Chen, S. Xu, M. Shao, Q. Zhang, F. Wei, and X. Duan: Hierarchical NiMn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors. Adv. Funct. Mater. 24, 2938 (2014).

    Article  CAS  Google Scholar 

  93. S. Mandal, A. Pal, R.K. Arun, and N. Chanda: Gold nanoparticle embedded paper with mechanically exfoliated graphite as flexible supercapacitor electrodes. J. Electroanal. Chem. 755, 22 (2015).

    Article  CAS  Google Scholar 

  94. G. Xin, Y. Wang, X. Liu, J. Zhang, Y. Wang, J. Huang, and J. Zang: Preparation of self-supporting graphene on flexible graphite sheet and electrodeposition of polyaniline for supercapacitor. Electrochim. Acta 167, 254 (2015).

    Article  CAS  Google Scholar 

  95. F. Xiao, S. Yang, Z. Zhang, H. Liu, J. Xiao, L. Wan, and Y. Liu: Scalable synthesis of freestanding sandwich-structured graphene/polyaniline/graphene nanocomposite paper for flexible all-solid-state supercapacitor. Sci. Rep. 5, 9359 (2015).

    Article  CAS  Google Scholar 

  96. W.K. Chee, H.N. Lim, I. Harrison, K.F. Chong, Z. Zainal, C.H. Ng, and N.M. Huang: Performance of flexible and binderless polypyrrole/graphene oxide/zinc oxide supercapacitor electrode in a symmetrical two-electrode configuration. Electrochim. Acta 157, 88 (2015).

    Article  CAS  Google Scholar 

  97. H. Xu, X. Hu, Y. Sun, H. Yang, X. Liu, and Y. Huang: Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes. Nano Res. 8, 1148 (2015).

    Article  CAS  Google Scholar 

  98. C. Han, C. Zhang, W. Tang, X. Li, and Z.L. Wang: High power triboelectric nanogenerator based on printed circuit board (PCB) technology. Nano Res. 8, 722 (2015).

    Article  CAS  Google Scholar 

  99. L.G. Bettini, P. Piseri, F. De Giorgio, C. Arbizzani, P. Milani, and F. Soavi: Flexible, ionic liquid-based micro-supercapacitor produced by supersonic cluster beam deposition. Electrochim. Acta 170, 57 (2015).

    Article  CAS  Google Scholar 

  100. H. Hu, Z. Pei, and C. Ye: Recent advances in designing and fabrication of planar micro-supercapacitors for on-chip energy storage. Energy Storage Mater. 1, 82 (2015).

    Article  Google Scholar 

  101. Y. Liang, Z. Wang, J. Huang, H. Cheng, F. Zhao, Y. Hu, and L. Qu: Series of in-fiber graphene supercapacitors for flexible wearable devices. J. Mater. Chem. A 3, 2547 (2015).

    Article  CAS  Google Scholar 

  102. Z. Yu, L. Tetard, L. Zhai, and J. Thomas: Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8, 702 (2015).

    Article  CAS  Google Scholar 

  103. A.K. Sundramoorthy, Y.C. Wang, and S. Gunasekaran: Low-temperature solution process for preparing flexible transparent carbon nanotube film for use in flexible supercapacitors. Nano Res. 8, 3430 (2015).

    Article  CAS  Google Scholar 

  104. Y.J. Kang, H. Chung, M.S. Kim, and W. Kim: Enhancement of CNT/PET film adhesion by nano-scale modification for flexible all-solid-state supercapacitors. Appl. Surf. Sci. 355, 160 (2015).

    Article  CAS  Google Scholar 

  105. Z. Zeng, X. Long, H. Zhou, E. Guo, X. Wang, and Z. Hu: On-chip interdigitated supercapacitor based on nano-porous gold/manganese oxide nanowires hybrid electrode. Electrochim. Acta 163, 107 (2015).

    Article  CAS  Google Scholar 

  106. C.J. Raj, B.C. Kim, W.J. Cho, W.G. Lee, S.D. Jung, Y.H. Kim, and K.H. Yu: Highly flexible and planar supercapacitors using graphite flakes/polypyrrole in polymer lapping film. ACS Appl. Mater. Interfaces 7, 13405 (2015).

    Article  CAS  Google Scholar 

  107. F. Pettersson, J. Keskinen, T. Remonen, L. Von Hertzen, E. Jansson, K. Tappura, and R. Österbacka: Printed environmentally friendly supercapacitors with ionic liquid electrolytes on paper. J. Power Sources 271, 298 (2014).

    Article  CAS  Google Scholar 

  108. X. Wang, Y. Yin, C. Hao, and Z. You: A high-performance three-dimensional micro supercapacitor based on ripple-like ruthenium oxide–carbon nanotube composite films. Carbon 82, 436 (2015).

    Article  CAS  Google Scholar 

  109. S. Wang, N. Liu, J. Tao, C. Yang, W. Liu, Y. Shi, and Y. Gao: Inkjet printing of conductive patterns and supercapacitors using a multi-walled carbon nanotube/Ag nanoparticle based ink. J. Mater. Chem. A 3, 2407 (2015).

    Article  CAS  Google Scholar 

  110. G. Sun, J. An, C.K. Chua, H. Pang, J. Zhang, and P. Chen: Layer-by-layer printing of laminated graphene-based interdigitated microelectrodes for flexible planar micro-supercapacitors. Electrochem. Commun. 51, 33 (2015).

    Article  CAS  Google Scholar 

  111. X. Liu, T. Qian, N. Xu, J. Zhou, J. Guo, and C. Yan: Preparation of on chip, flexible supercapacitor with high performance based on electrophoretic deposition of reduced graphene oxide/polypyrrole composites. Carbon 92, 348 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work is supported by UESTC new faculty startup fund, the National Natural Science Foundation (Grant No. 21403031), and the Fundamental Research Funds for the Chinese Central Universities (Grant No. ZYGX2014J088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong He.

Additional information

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Wen, K., Zhang, Z. et al. Advanced materials for flexible electrochemical energy storage devices. Journal of Materials Research 33, 2281–2296 (2018). https://doi.org/10.1557/jmr.2018.232

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.232

Navigation