Skip to main content
Log in

Effects of surface properties of red mud on interactions with Escherichia coli

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Adsorption of Escherichia coli (E. coli) cells on red mud (RM) is important in the interactions between RM and bacteria. The objective of this work is to study adsorption of E. coli onto RM and to determine its influence in relation to the surface properties of RM. The effects of different calcination temperatures on the surface properties of red mud were investigated by thermogravimetric analysis, x-ray diffraction, scanning electron microscopy, Brunauer, Emmett, Teller (surface measurement)/N2 adsorption method, and zeta potential analysis. A higher adsorption capacity was observed from RM calcinated at 700 °C (RM700) due to larger pores formed on the surface of RM. The correlation between the adsorption efficacy and surface properties of RM is discussed and the extended Derjaguin-Landau-Verwey-Overbeek theory suggests that when the adsorption reaches equilibrium, the increased adsorption of E. coli onto RM is due to the smaller energy barrier between E. coli and RM700 as compared with that between E. coli and raw RM (RM0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
TABLE II.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

References

  1. R.C. Sahu, R. Patel, and B.C. Ray: Utilization of activated CO2-neutralized red mud for removal of arsenate from aqueous solutions. J. Hazard. Mater. 179, 1007 (2010).

    Article  CAS  Google Scholar 

  2. W.W. Huang, S.B. Wang, Z.H. Zhu, L. Lia, X.D. Yao, V. Rudolph, and F. Haghseresht: Phosphate removal from wastewater using red mud. J. Hazard. Mater. 158, 35 (2008).

    Article  CAS  Google Scholar 

  3. S.J. Palmer, R.L. Frost, and T. Nguyen: Hydrotalcites and their role in coordination of anions in Bayer liquors: Anion binding in layered double hydroxides. Coord. Chem. Rev. 253, 250 (2009).

    Article  CAS  Google Scholar 

  4. S.B. Wang, H.M. Ang, and M.O. Tade: Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere 72, 1621 (2008).

    Article  CAS  Google Scholar 

  5. A.R. Hind, S.K. Bhargava, and S.C. Grocott: The surface chemistry of Bayer process solids: A review. Colloids Surf., A 146, 359 (1999).

    Article  CAS  Google Scholar 

  6. Y. Zhang, Y. Qu, and S. Wu: Engineering geological properties and comprehensive utilization of the solid waste (red mud) in aluminium industry. Environ. Geol. 41, 249 (2001).

    Article  CAS  Google Scholar 

  7. C. Brunori, C. Cremisini, P. Massanisso, V. Pinto, and L. Torricelli: Reuse of a treated red mud bauxite waste: Studies on environmental compatibility. J. Hazard. Mater. 117, 55 (2005).

    Article  CAS  Google Scholar 

  8. R.K. Paramguru, P.C. Rath, and V.N. Misra: Trends in red mud utilization - a review. Miner. Process. Extr. Metall. Rev. 26, 1 (2004).

    Article  Google Scholar 

  9. Y.J. Liu, R. Naidu, and H. Ming: Red mud as an amendment for pollutants in solid and liquid phases. Geoderma 163, 1 (2011).

    Article  CAS  Google Scholar 

  10. S.M. Barns and S.A. Nierzwicki-Bauer: Microbial diversity in modern subsurface, ocean, surface environments, in Geomicrobiology: Interactions Between Microbes and Minerals, Vol. 35, edited by J.F. Banfield and K. H. Nealson (Rev. Mineral. Geochem., Springer-Verlag Ibérica, 1997), p. 35.

    Article  CAS  Google Scholar 

  11. J.W. Foppena, Y. Liemb, and J. Schijvenc: Effect of humic acid on the attachment of Escherichia coli in columns of goethite-coated sand. Water Res. 42, 211 (2008).

    Article  Google Scholar 

  12. S.M. Dorner, W.B. Anderson, T. Gaulin, H.L. Candon, R.M. Slawson, P. Payment, and P.M. Huck: Pathogen and indicator variability in a heavily impacted watershed. J. Water Health 5, 241 (2007).

    Article  Google Scholar 

  13. G.B. McBride and M.N. Mittinity: Explaining differential timing of peaks of a pathogen versus a faecal indicator during flood events. In MODSIM 2007: International Congress on Modelling and Simulation: Land, Water and Environmental Management: Integrated Systems for Sustainability, L. Oxley and D. Kulasiri, eds. (Modelling & Simulation Soc Australia & New Zealand Inc., Christchurch, New Zealand, 2007); p. 2417.

    Google Scholar 

  14. T. Guo, S.J. Cao, R. Su, Z.Q. Li, P. Hu, and Z. Xu: Adsorptive property of Cu2+-loaded montmorillonite clays for Escherichia coli K88 in vitro. J. Environ. Sci. 23, 1808 (2011).

    Article  CAS  Google Scholar 

  15. R.W. Muirhead, R.P. Collins, and P.J. Bremer: Erosion and subsequent transport state of Escherichia coli from cowpats. Appl. Environ. Microbiol. 71, 2875 (2005).

    Article  CAS  Google Scholar 

  16. D.M. Oliver, C.D. Clegg, A.L. Heathwaite, and P.M. Haygarth: Preferential attachment of Escherichia coli to different particle size fractions of an agricultural grassland soil. Water Air Soil Pollut. 185, 369 (2007).

    Article  CAS  Google Scholar 

  17. W. Zhang, B. Rittmann, and Y.S. Chen: Size effects on adsorption of hematite nanoparticles on E. coli cells. Environ. Sci. Technol. 45, 2172 (2011).

    Article  CAS  Google Scholar 

  18. W.P. Johnson and B.E. Logan: Enhanced transport of bacteria in porous media by sediment-phase and aqueous-phase natural organic matter. Water Res. 30, 923 (1996).

    Article  CAS  Google Scholar 

  19. X.P. Zheng, P.J. Arps, and R.W. Smith: Adhesion of two bacteria onto dolomite and apatite: Their effect on dolomite depression in anionic flotation. Int. J. Miner. Process. 62, 159 (2001).

    Article  CAS  Google Scholar 

  20. G.E. Ho, R.A. Gibbs, and K. Mathew: Bacteria and virus removal from secondary effluent in sand and red mud columns. Water Sci. Technol. 23, 261 (1991).

    Article  CAS  Google Scholar 

  21. Z.C. Zhen, Y.H. Zhang, J.H. Ji, Y.X. Yin, W.S. Tong, and P.K. Chu: Novel functional materials with active adsorption and antimicrobial properties. Mater. Lett. 89, 19 (2012).

    Article  CAS  Google Scholar 

  22. P. Castaldi, M. Silvetti, L. Santona, S. Enzo, and P. Melis: XRD, FTIR, and thermal analysis of bauxite ore-processing waste (red mud) exchanged with heavy metals. Clays Clay Miner. 56, 461 (2008).

    Article  CAS  Google Scholar 

  23. P. Castaldi, L. Santona, C. Cozza, V. Giuliano, C. Abruzzese, V. Nastro, and P. Melis: Thermal and spectroscopic studies of zeolites exchanged with metal cations. J. Mol. Struct. 734, 99 (2005).

    Article  CAS  Google Scholar 

  24. J.M.R. Mercury, A.A. Cabral, A.E.M. Paiva, R.S. Angelica, R.F. Neves, and T. Scheller: Thermal behavior and evolution of the mineral phases of Brazilian red mud. J. Therm. Anal. Calorim. 104, 635 (2011).

    Article  Google Scholar 

  25. M. Laskou, G. Margomenou-Leonidopoulou, and V. Balek: Thermal characterization of bauxite samples. J. Therm. Anal. Calorim. 84, 141 (2006).

    Article  CAS  Google Scholar 

  26. A. Alp and M.S. Goral: The influence of soda additive on the thermal properties of red mud. J. Therm. Anal. Calorim. 73, 201 (2003).

    Article  CAS  Google Scholar 

  27. A. Atasoy: An investigation on the characterization and thermal analysis of the Aughinish red mud. J. Therm. Anal. Calorim. 81, 357 (2005).

    Article  CAS  Google Scholar 

  28. V.M. Sglavo, S. Maurina, A. Conci, A. Salviati, G. Carturan, and G. Cocco: Bauxite ‘red mud’ in the ceramic industry. Part 2: Production of clay-based ceramics. J. Eur. Ceram. Soc. 20, 245 (2000).

    Article  CAS  Google Scholar 

  29. C.F. Linares, S. Sanchez, C.U. de Navarro, K. Rodriguez, and M.R. Goldwasser: Study of cancrinite-type zeolites as possible antacid agents. J. Therm. Anal. Calorim. 77, 215 (2005).

    CAS  Google Scholar 

  30. Y.L. Ma, B. Yang, and L. Xie: Adsorptive property of Cu2+-ZnO/cetylpyridinium–montmorillonite complexes for pathogenic bacterium in vitro. Colloids Surf., B 79, 390 (2010).

    Article  CAS  Google Scholar 

  31. S. Karaca, A. Gurses, M. Ejder, and M. Acikyildiz: Adsorptive removal of phosphate from aqueous solutions using raw and calcinated dolomite. J. Hazard. Mater. 128, 273 (2006).

    Article  CAS  Google Scholar 

  32. Y.T. He, J.M. Wan, and T. Tokunaga: Kinetic stability of hematite nanoparticles: The effect of particle sizes. J. Nanopart. Res. 10, 321 (2008).

    Article  CAS  Google Scholar 

  33. D.R.E. Snoswell, J.M. Duan, D. Fornasiero, and J. Ralston: Colloid stability of synthetic titania and the influence of surface roughness. J. Colloid Interface Sci. 286, 526 (2005).

    Article  CAS  Google Scholar 

  34. M. Hermansson: The DLVO theory in microbial adhesion. Colloids. Surf., B 14, 105 (1999).

    Article  CAS  Google Scholar 

  35. Z. Adamczyk, and P. Weronski: Application of the DLVO theory for particle deposition problems. Adv. Colloid Interface Sci. 83, 137 (1999).

    Article  CAS  Google Scholar 

  36. M. Bostrom, D.R.M. Williams, and B.W. Ninham: Specific ion effects: Why DLVO theory fails for biology and colloid systems. Phys. Rev. Lett. 87, 1681031–1681034 (2001).

    Article  Google Scholar 

  37. Y. Cengeloglu, A. Tor, M. Ersoz, and G. Arslan: Removal of nitrate from aqueous solution by using red mud. Sep. Purif. Technol. 51, 374 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was jointly supported by National High Technology Research and Development Program (863 Program 2012AA06A109) of China, the open foundation of National Laboratory of Mineral Materials of China University of Geosciences (Grant Nos. 519002310062 and 08A005), as well as Hong Kong Research Grants Council (RGC) General Research Funds (GRF) Nos. CityU 112510 and 112212.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihe Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, W., Zhang, Y., Zhen, Z. et al. Effects of surface properties of red mud on interactions with Escherichia coli. Journal of Materials Research 28, 2332–2338 (2013). https://doi.org/10.1557/jmr.2013.53

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.53

Navigation