Skip to main content
Log in

Kinetic stability of hematite nanoparticles: the effect of particle sizes

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanoparticles are ubiquitous in environment and are potentially important in many environmental processes such as sorption, coprecipitation, redox reactions, and dissolution. To investigate particle size effects on nanoparticle aggregation and stability, this study tested aggregation behavior of 12(±2), 32(±3), and 65(±3) nm (hydrated radius) hematite particles under environmental relevant pH and ionic strength conditions. The results showed that at the same ionic strength and pH conditions, different particle sizes show different tendency to aggregate. At the same ionic strength, aggregation rates are higher for smaller particles. The critical coagulation concentration also depends on particle size, and decreases as particle size decreases. As the particle size decreases, fast aggregation shifted to lower pH. This may be related to a dependence of PZC on particle size originating from change of structure and surface energy characteristics as particle size decreases. Under the same conditions, aggregation occurs faster as particle concentration increases. Even though the nanoparticles of different sizes show different response to the same pH and ionic strength, DLVO theory can be used to qualitatively understand hematite nanoparticle aggregation behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adachi Y, Koga S, Kobayashi M, Inada M (2005) Study of colloidal stability of allophane dispersion by dynamic light scattering. Colloids Surf A 265:149–154

    Article  CAS  Google Scholar 

  • Amal R, Coury JR, Raper JA, Walsh WP, Waite TD (1990) Structure and kinetics of aggregating colloidal hematite. Colloids Surf 46:1–19

    Article  CAS  Google Scholar 

  • Amal R, Raper JA, Waite TD (1992) Effect of fulvic acid adsorption on the aggregation kinetics and structure of hematite particles. J Colloid Interface Sci 151:244–257

    Article  CAS  Google Scholar 

  • Banfield JF, Zhang H (2001) Nanoparticles in the environment. Rev Mineral Geochem 44:1–58

    Article  CAS  Google Scholar 

  • Behrens SH, Borkovec M, Schurtenberger P (1998) Aggregation in charge-stabilized colloidal suspensions revisited. Langmuir 14:1951–1954

    Article  CAS  Google Scholar 

  • Bickmore BR, Rosso KM, Nagy KL, Cygan RT, Tadanier CJ (2003) Ab initio determination of edge surface structures for dioctahedral 2:1 phyllosilicates: implications for acid-base reactivity. Clays Clay Miner 51:359–371

    Article  CAS  Google Scholar 

  • Burns JL, Yan Y-d, Jameson GJ, Biggs S (1997) A light scattering study of the fractal aggregation behavior of a model colloidal system. Langmuir 13:6413–6420

    Article  CAS  Google Scholar 

  • Chen KL, Mylon SE, Elimelech M (2006) Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. Environ Sci Technol 40:1516–1523

    Article  CAS  Google Scholar 

  • Fukushi K, Sato T (2005) Using a surface complexation model to predict the nature and stability of nanoparticles. Environ Sci Technol 39:1250–1256

    Article  CAS  Google Scholar 

  • Hanus LH, Hartzler RU, Wagner NJ (2001) Electrolyte-induced aggregation of acrylic latex. 1. Dilute particle concentrations. Langmuir 17:3136–3147

    Article  CAS  Google Scholar 

  • Heidmann I, Christl I, Kretzschmar R (2005) Aggregation kinetics of kaolinite-fulvic acid colloids as affected by the sorption of Cu and Pb. Environ Sci Technol 39:807–813

    Article  CAS  Google Scholar 

  • Hiemenz PC, Rajagopalan R (eds) (1997) Principles of colloid and surface chemistry, 3rd edn, revised and expanded. Marcel Dekker, New York

  • Hochella MF, Moore JN, Putnis CV, Putnis A, Kasama T, Eberl DD (2005) Direct observation of heavy metal-mineral association from the Clark Fork River Superfund Complex: implications for metal transport and bioavailability. Geochim Cosmochim Acta 69:1651–1663

    Article  CAS  Google Scholar 

  • Holthoff H, Egelhaaf SU, Borkovec M, Schurtenberger P, Sticher H (1996) Coagulation rate measurements of colloidal particles by simultaneous static and dynamic light scattering. Langmuir 12:5541–5549

    Article  CAS  Google Scholar 

  • Kimball BA, Callender E, Axtmann EV (1995) Effects of colloids on metal transport in a river receiving acid mine drainage, upper Arkansas River, Colorado, USA. Appl Geochem 10:285–306

    Article  CAS  Google Scholar 

  • Kosmulski M (2002) pH dependent surface charging and points of zero charge. J Colloid Interface Sci 253:77–87

    Article  CAS  Google Scholar 

  • Kosmulski M (2006) pH dependent surface charging and points of zero charge iii. update. J Colloid Interface Sci 298:730–741

    Article  CAS  Google Scholar 

  • Kretzschmar R, Holthoff H, Sticher H (1998) Influence of pH and humic acid on coagulation kinetics of kaolinite: a dynamic light scattering study. J Colloid Interface Sci 202:95–103

    Article  CAS  Google Scholar 

  • Madden AS, Hochella MF Jr (2005) A test of geochemical reactivity as a function of mineral size: manganese oxidation promoted by hematite nanoparticles. Geochim Cosmochim Acta 69:389–398

    Article  CAS  Google Scholar 

  • Mulvaney P, Cooper R, Grieser F, Meisel D (1988) Charge trapping in the reductive dissolution of colloidal suspensions of iron(iii) oxides. Langmuir 4:1206–1211

    Article  CAS  Google Scholar 

  • Mylon SE, Chen KL, Elimelech M (2004) Influence of natural organic matter and ionic composition on the kinetics and structure of hematite colloid aggregation: implications to iron depletion in estuaries. Langmuir 20:9000–9006

    Article  CAS  Google Scholar 

  • Plaza RC, Quirantes A, Delgado AV (2002) Stability of dispersions of colloidal hematite/yttrium oxide core-shell particles. J Colloid Interface Sci 252:102–108

    Article  CAS  Google Scholar 

  • Ponder SM, Darab JG, Bucher D, Caulder D, Mallouk TE (2001) Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chem Mater 13:479–486

    Article  CAS  Google Scholar 

  • Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(vi) and Pb(ii) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569

    Article  CAS  Google Scholar 

  • Schrick B, Blough J, Jones A, Mallouk TE (2002) Hydrodechlorination of trichoroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem Mater 14:5140–5147

    Article  CAS  Google Scholar 

  • Schudel M, Behrens SH, Holthoff H, Kretzschmar R, Borkovec M (1997) Absolute aggregation rate constants of hematite particles in aqueous suspensions: a comparison of two different surface morphologies. J Colloid Interface Sci 196:241–253

    Article  CAS  Google Scholar 

  • Schwertmann U, Cornell RM (1991) Iron oxides in the laboratory: preparation and characterization. Wiley-VCH, New York

    Google Scholar 

  • Tungittiplakorn WLW, Cohen C, Kim JY (2004) Engineered polymeric nanoparticles for soil remediation. Environ Sci Technol 38:1605–1610

    Article  CAS  Google Scholar 

  • Wang C, Zhang W (1997) Nanoscale metal particles for dechlorination of PCE and PCB. Environ Sci Technol 31:2154–2156

    Article  CAS  Google Scholar 

  • Waychunas GA (2001) Structure, aggregation and characterization of nanoparticles. Rev Mineral Geochem 44:105–166

    Article  CAS  Google Scholar 

  • Waychunas GA, Kim CS, Banfield JF (2005) Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J Nanoparticle Res 7:409–433

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Benjamin Gilbert and two anonymous reviewers whose comments helped improve the manuscript. This work was carried out under U.S. Dept. of Energy Contracts No. DE-AC03-76SF00098, with funding provided by the U.S. Dept. of Energy, Basic Energy Sciences, Geosciences Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Thomas He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y.T., Wan, J. & Tokunaga, T. Kinetic stability of hematite nanoparticles: the effect of particle sizes. J Nanopart Res 10, 321–332 (2008). https://doi.org/10.1007/s11051-007-9255-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-007-9255-1

Keywords

Navigation