Skip to main content
Log in

Influence of stacking-fault energy on the accommodation of severe shear strain in Cu-Al alloys during equal-channel angular pressing

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

X-ray diffraction (XRD) and transmission electron microscope (TEM) investigations have been carried out to decode the influence of stacking-fault energy (SFE) on the accommodation of large shear deformation in Cu-Al alloys subjected to one-pass equal-channel angular pressing. XRD results exhibit that the microstrain and density of dislocations initially increased with the reduction in the SFE, whereas they sharply decreased with a further decrease in SFE. By systematic TEM observations, we noticed that the accommodation mechanism of intense shear strain was gradually transformed from dislocation slip to deformation twin when SFE was lowered. Meanwhile, twin intersections and internal twins were also observed in the Cu-Al alloy with extremely low SFE. Due to the large external plastic deformation, microscale shear bands, as an inherent deformation mechanism, are increasingly significant to help carry the high local plasticity because low SFE facilitates the formation of shear bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103 (2000).

    Article  CAS  Google Scholar 

  2. R.Z. Valiev and T.G. Langdon: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881 (2006).

    Article  CAS  Google Scholar 

  3. H. Gleiter: Nanostructured materials: Basic concepts and microstructure. Acta Mater. 48, 1 (2000).

    Article  CAS  Google Scholar 

  4. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: The process of grain refinement in equal-channel angular pressing. Acta Mater. 46, 3317 (1998).

    Article  CAS  Google Scholar 

  5. Dalla F. Torre, R. Lapovok, J. Sandlin, P.F. Thomson, C.H.J. Davies, and E.V. Pereloma: Microstructures and properties of copper processed by equal channel angular extrusion for 1–16 passes. Acta Mater. 52, 4819 (2004).

    Article  CAS  Google Scholar 

  6. Q. Xue, I.J. Beyerlein, D.J. Alexander, and G.T. Gray III: Mechanisms for initial grain refinement in OFHC copper during equal channel angular pressing. Acta Mater. 55, 655 (2007).

    Article  CAS  Google Scholar 

  7. W.Z. Han, Z.F. Zhang, S.D. Wu, and S.X. Li: Influences of crystallographic orientations on deformation mechanism and grain refinement of Al single crystals subjected to one-pass equal-channel angular pressing. Acta Mater. 55, 5889 (2007).

    Article  CAS  Google Scholar 

  8. C.X. Huang, K. Wang, S.D. Wu, Z.F. Zhang, G.Y. Li, and S.X. Li: Deformation twinning in polycrystalline copper at room temperature and low strain rate. Acta Mater. 54, 655 (2006).

    Article  CAS  Google Scholar 

  9. S. Komura, Z. Horita, and M. Nemoto: Influence of stacking fault energy on microstructural development in equal channel angular pressing. J. Mater. Res. 14, 4044 (1999).

    Article  CAS  Google Scholar 

  10. C.X. Huang, Y.L. Gao, G. Yang, S.D. Wu, G.Y. Li, and S.X. Li: Bulk nanocrystalline stainless steel fabricated by equal channel angular pressing. J. Mater. Res. 21, 1687 (2006).

    Article  CAS  Google Scholar 

  11. X.H. An, W.Z. Han, C.X. Huang, P. Zhang, G. Yang, S.D. Wu, and Z.F. Zhang: High strength and utilizable ductility of bulk ultrafine-grained Cu–Al alloys. Appl. Phys. Lett. 92, 201915 (2008).

    Article  CAS  Google Scholar 

  12. G.G. Yapici, I. Karaman, Z.P. Luo, H.J. Maier, and Y.I. Chumlyakov: Microstructural refinement and deformation twinning during severe plastic deformation of 316L stainless steel at high temperatures. J. Mater. Res. 19, 2268 (2004).

    Article  CAS  Google Scholar 

  13. S. Qu, X.H. An, H.J. Yang, C.X. Huang, G. Yang, Q.S. Zang, Z.G. Wang, S.D. Wu, and Z.F. Zhang: Microstructural evolution and mechanical properties of Cu–Al alloys subjected to equal channel angular pressing. Acta Mater. 57, 1586 (2009).

    Article  CAS  Google Scholar 

  14. W.Z. Han, S.D. Wu, C.X. Huang, S.X. Li, and Z.F. Zhang: Orientation design for enhancing deformation twinning in Cu single crystal subjected to equal channel angular pressing. Adv. Em. Mater. 10, 1110 (2008).

    Article  CAS  Google Scholar 

  15. A.P. Zhilyaev, G.V. Nurislamova, B-K Kim, M.D. Baro, J.A. Szpunar, and T.G. Langdon: Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Mater. 51, 753 (2003).

    Article  CAS  Google Scholar 

  16. C. Xu, Z. Horita, and T.G. Langdon: The evolution of homogeneity in processing by high-pressure torsion. Acta Mater. 55, 203 (2007).

    Article  CAS  Google Scholar 

  17. Y.H. Zhao, Y.T. Zhu, X.Z. Liao, Z. Horita, and T.G. Langdon: Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy. Appl. Phys. Lett. 89, 121906 (2006).

    Article  CAS  Google Scholar 

  18. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai: Novel ultra-high straining process for bulk materials—Development of the accumulative roll-bonding (ARB) process. Acta Mater. 47, 579 (1999).

    Article  CAS  Google Scholar 

  19. Y.M. Wang, M.W. Chen, H.W. Sheng, and E. Ma: Nanocrystalline grain structures developed in commercial purity Cu by low-temperature cold rolling. J. Mater. Res. 17, 3004 (2002).

    Article  CAS  Google Scholar 

  20. Y.S. Li, N.R. Tao, and K. Lu: Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures. Acta Mater. 56, 230 (2008).

    Article  CAS  Google Scholar 

  21. Y. Zhang, N.R. Tao, and K. Lu: Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles. Acta Mater. 56, 2429 (2008).

    Article  CAS  Google Scholar 

  22. Y.S. Li, Y. Zhang, N.R. Tao, and K. Lu: Effect of the Zener–Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation. Acta Mater. 57, 761 (2009).

    Article  CAS  Google Scholar 

  23. B.Q. Han, F.A. Mohamed, and E.J. Lavernia: Mechanical properties of iron processed by severe plastic deformation. Metall. Mater. Trans. A 34, 71 (2003).

    Article  Google Scholar 

  24. D.H. Shin, I. Kim, J. Kim, Y.S. Kim, and S.L. Semiatin: Microstructure development during equal-channel angular pressing of titanium. Acta Mater. 51, 983 (2003).

    Article  CAS  Google Scholar 

  25. M.A. Meyers and K.K. Chawla: Mechanical Behavior of Materials (Prentice Hall, NJ, 1999).

    Google Scholar 

  26. G.E. Dieter: Mechanical Metallurgy, 3rd ed. (McGraw-Hill, Boston, 1986).

    Google Scholar 

  27. J.P. Hirth: Theory of Dislocation, 2nd ed. (John Wiley & Sons, 1982).

    Google Scholar 

  28. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed. (Elsevier, Oxford, 2004).

    Google Scholar 

  29. W.Z. Han, Z.F. Zhang, S.D. Wu, and S.X. Li: Combined effects of crystallographic orientation, stacking fault energy and grain size on deformation twinning in FCC crystals. Philos. Mag. 88, 3011 (2008).

    Article  CAS  Google Scholar 

  30. A.P. Zhilyaev, B-K Kim, J.A. Szpunar, Baró M.D., and T.G. Langdon: The microstructural characteristics of ultrafine-grained nickel. Mater. Sci. Eng.A, 391, 377 (2005).

    Article  CAS  Google Scholar 

  31. Z.W. Wang, Y.B. Wang, X.Z. Liao, Y.H. Zhao, E.J. Lavernia, Y.T. Zhu, Z. Horita, and T.G. Langdon: Influence of stacking fault energy on deformation mechanism and dislocation storage capacity in ultrafine-grained materials. Scr. Mater. 60, 52 (2009).

    Article  CAS  Google Scholar 

  32. Y. Iwahashi, J.T. Wang, Z. Horita, M. Nemoto, and T.G. Langdon: Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scr. Mater. 35, 143 (1996).

    Article  CAS  Google Scholar 

  33. H.P. Klug and L.E. Alexander: Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York, 1974).

    Google Scholar 

  34. A. Rohatgi and K.S. Vecchio: The variation of dislocation density as a function of the stacking fault energy in shock-deformed FCC materials. Mater. Sci. Em.A, 328, 256 (2002).

    Article  Google Scholar 

  35. G.K. Williamson and R.E. Smallman: Dislocation densities in some annealed and cold-worked metals from measurements on the x-ray Debye-Scherrer spectrum. Philos. Mag. 1, 34 (1956).

    Article  CAS  Google Scholar 

  36. D.A. Hughes, N. Hansen, and D.J. Bammann: Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations. Scr. Mater. 48, 147 (2003).

    Article  CAS  Google Scholar 

  37. M.F. Ashby: The deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399 (1970).

    Article  CAS  Google Scholar 

  38. H. Gao, Y. Huang, W.D. Nix, and J.W. Hutchinson: Mechanism-based strain gradient plasticity—I. Theory. J. Mech. Phys. Solids 47, 1263 (1999).

    Google Scholar 

  39. M. Hatherly and A.S. Malin: Deformation of copper and low stacking-fault energy, copper base alloys. Met. Tech. 6, 308 (1979).

    Article  CAS  Google Scholar 

  40. S.I. Hong: Cyclic stress-strain response and slip mode modification in fatigue of f.c.c. solid solutions. Scr. Mater. 44, 995 (2001).

    Article  Google Scholar 

  41. H. Paul, J.H. Driver, and Z. Jasienski: Shear banding and recrystallization nucleation in a Cu–2%Al alloy single crystal. Acta Mater. 50, 815 (2002).

    Article  CAS  Google Scholar 

  42. P. Müllner and A.E. Romanov: Internal twinning in deformation twinning. Acta Mater. 48, 2323 (2000).

    Article  Google Scholar 

  43. D. _Kuhlmann-Wilsdorf: Theory of plastic deformation: Properties of low-energy dislocation structures. Mater. Sci. Eng.A, 113, 1 (1989).

    Article  Google Scholar 

  44. D. _Kuhlmann-Wilsdorf: Deformation bands, the LEDS theory, and their importance in texture development: Part II. Theoretical conclusions. Metall. Mater. Trans. A 35, 369 (2004).

    Article  Google Scholar 

  45. J. Gubicza, N.Q. Chinh, J.L. Lábár, Z. Hegedüs, C. Xu, and T.G. Langdon: Microstructure and yield strength of severely deformed silver. Scr. Mater. 58, 775 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiding Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, X., Lin, Q., Qu, S. et al. Influence of stacking-fault energy on the accommodation of severe shear strain in Cu-Al alloys during equal-channel angular pressing. Journal of Materials Research 24, 3636–3646 (2009). https://doi.org/10.1557/jmr.2009.0426

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0426

Navigation