Skip to main content

Advertisement

Log in

Advancing towards constitutive equations for the metal industry via the LEDS theory

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A prime objective in the development of crystal dislocation theory has been, and at any rate should be, constitutive equations for practical use in the metal forming industry. Protracted controversies regarding workhardening theory have frustrated this goal for the past seven decades. The are fueled by the paradox that plastic deformation is a prime example for the second law of thermodynamics in converting mechanical work into heat with good efficiency, even while in seeming opposition to the second law it typically raises the internal energy of the deformed material. The low-energy dislocation structures (LEDS) theory resolves this difficulty by showing that, as always in inanimate nature, so also plastic deformation proceeds close to minimum free energy. Indeed recent evidence based on deformation band structures proves that plastic deformation typically proceeds very close to minimum energy among the accessible configurations. White plastic strain raises the flow stress, in ductile crystalline materials mostly through generating dislocation structures, but also through twins, kink bands, microcracks and others, Newton’s third law, i.e., force equilibrium, is always stringently obeyed. Therefore, deformation dislocation structures are in thermal equilibrium as long as the stress that generated them remains in place. Based on this concept of free energy minimization, the LEDS theory has long since explained, at least semiquantitatively, all significant aspects of metal strength and deformation, as well as the effects of heat treatments. The LEDS theory is the special case, namely, as pertaining to dislocation structures, of the more general low-energy structures (LEDS) theory that governs all types of deformation independent of the deformation mechanism, and that operates in all types of materials, including plastics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.I. Talor: Proc. Ry. Soc. (London), 1934, vol. 145, pp. 362–87 and 388–404.

    ADS  Google Scholar 

  2. G.I. Taylor: J. Inst. Met. (London), 1938, vol. 62, pp. 307–24.

    ADS  Google Scholar 

  3. G. Batchelor: The Life and Legacy of G.I. Taylor, Cambridge University Press, Cambridge, UK, 1996.

  4. C.F. Elam: Distortion of Metal Crystals, Oxford University Press, Oxford, UK, 1935.

  5. D. Kuhlmann-Wilsdorf: Trans. TMS, AIME, 1962, vol. 224, pp. 1047–61.

    CAS  Google Scholar 

  6. E. Orowan: Z. Phys., 1934, vol. 89, pp. 605–13, 614–33, and 634.

    Article  Google Scholar 

  7. R. Becker: Phys. Z, 1925, vol. 26, pp. 919–25.

    CAS  Google Scholar 

  8. R. Becker: Z. Phys., 1925, vol. 33, p. 185.

    Article  CAS  Google Scholar 

  9. R. Becker: Z. Technol. Phys., 1926, vol. 7, p. 547

    CAS  Google Scholar 

  10. R. Becker and W. Boas: Metallwirtschaft, 1929, vol. 8, pp. 317–21.

    Google Scholar 

  11. R. Becker and E. Orowan: Z. Phys., 1932, vol. 79, pp. 566–72.

    Article  ADS  CAS  Google Scholar 

  12. G. Masing and M. Polanyi: Ergebn. Exact. Naturwissenschaften, 1923, vol. 2, p. 177.

    Google Scholar 

  13. M. Polanyi: Z. Krista., 1925, vol. 61, p. 49.

    Google Scholar 

  14. A. Kochendoerfer: Plastic Properties of Metals and Crystalline Materials, Springer, Berlin, 1941.

    Google Scholar 

  15. U. Dehlinger: Ann. Phys., 1929, vol. 2, p. 749.

    Article  CAS  Google Scholar 

  16. D. Kuhlmann and G. Masing: Z. Metallk., 1948, vol. 39, pp. 361–75.

    Google Scholar 

  17. D. Kuhlmann: Z. Phys., 1947, vol. 124, pp. 468–81.

    Google Scholar 

  18. J.W. Cahn and F.R.N. Nabarro: Phil. Mag., 2001, vol. 81, pp. 1409–26.

    ADS  CAS  Google Scholar 

  19. P. Haasen and G. Leibfried: Z. Metallk., 1952, vol. 43, pp. 317–21.

    CAS  Google Scholar 

  20. D. Kuhlmann-Wilsdorf: Metall. Trans., 1985, vol. 16A, pp. 2091–108.

    Google Scholar 

  21. D. Kuhlmann-Wilsdorf: Z. Metallk., 1962, vol. 53, pp. 324–25.

    CAS  Google Scholar 

  22. D. Kuhlmann-Wilsdorf: Proc. Int. Conf. Crystal Lattice Defects, 1962; Conf. J. Phys. Soc. J., 1963, vol. 18, Suppl. I, pp. 68–73.

  23. D. Kuhlmann-Wilsdorf, H.J. Levinstein, W.H. Robinson, and H.G.F. Wilsdorf: J. Aust. Inst. Met., 1963, vol. 8, pp. 102–14.

    CAS  Google Scholar 

  24. D. Kuhlmann-Wilsdorf: in Workhardening, J.P. Hirth and J. Weertman, eds., Gordon and Breach, New York, NY, 1966, pp. 97–132.

    Google Scholar 

  25. D. Kuhlmann-Wilsdorf: Metall. Trans., 1970, vol. 1, pp. 3173–79.

    Google Scholar 

  26. D. Kuhlmann-Wilsdorf: in Work Hardening in Tension and Fatigue, A.W. Thompson, ed., AIME, New York, NY, 1977, pp. 1–43.

    Google Scholar 

  27. D. Kuhlmann-Wilsdorf and N. Comins: Mater. Sci. Eng., 1982, vol. 60, pp. 7–24.

    Google Scholar 

  28. D. Kuhlmann-Wilsdorf: Phys. Status Solidi, 1987, vol. (a)104, pp. 121–44.

    Google Scholar 

  29. D. Kuhlmann-Wilsdorf: Mater. Sci. Eng., 1989, vol. A113, pp. 1–41.

    CAS  Google Scholar 

  30. D. Kuhlmann-Wilsdorf: Acta. Metall., 1989, vol. 37, pp. 3217–23.

    Article  CAS  Google Scholar 

  31. D. Kuhlmann-Wilsdorf and H.G.F. Wilsdorf: Phys. Status Solidi, 1992, vol. (b)172, pp. 235–48.

    Google Scholar 

  32. D. Kuhlmann-Wilsdorf: Phys. Status Solidi, 1995, vol. (a)149, pp. 131–53.

    Google Scholar 

  33. D. Kuhlmann-Wilsdorf: Phys. Status Solidi, 1995, vol. (a)149, pp. 225–41.

    Google Scholar 

  34. D. Kuhlmann-Wilsdorf: Mater. Res. Innov., 1998, vol. 1, pp. 265–97.

    Article  CAS  Google Scholar 

  35. D. Kuhlmann-Wilsdorf: Phil. Mag., 1999, vol. A79, pp. 955–1008.

    ADS  Google Scholar 

  36. D. Kuhlmann-Wilsdorf: Acta Metall. Mater., 1999, vol. 47, pp. 1697–712.

    CAS  Google Scholar 

  37. D. Kuhlmann-Wilsdorf: Metall. Mater. Trans., A 1999, vol. A30, pp. 2391–401.

    Article  Google Scholar 

  38. D. Kuhlmann-Wilsdorf: in ‘Dislocations in Solids’, (Eds. F.R.N. Nabarro and M.S. Duesbery, Elsevier Science, B.V., 2002) vol. 11, Chapter 59, pp. 211–342.

    Google Scholar 

  39. D. Kuhlmann-Wilsdorf: Mater. Sci. Eng., 2001, vol. A315, pp. 211–16. (Note: Claiming that the present article was “too political,” the organizers of the International Conference Dislocations 2000, at NIST, Gaithersburg, MD, June 17–22, 2000, rejected it from inclusion in the Conference Proceedings, published in Mater. Sci. Eng. A. However, as submitted personally to the same journal, the article was accepted without change and received highly favorable reviewer comment.)

    CAS  Google Scholar 

  40. D. Kuhlmann-Wilsdorf, Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2519–2539.

    Article  CAS  Google Scholar 

  41. Proc. Int. Conf. on Low-Energy Dislocation Structures, University of Virginia, Charlottesville, VA, Aug. 10–14, 1986, M.N. Bassim, W.A. Jesser, D. Kuhlmann-Wilsdorf, and H.G.F. Wilsdorf, N. Elsevier Sequoia, Lausanne, 1986; also Mater. Sci. Eng., 1986, vol. 1, pp. 1–574, eds. 1987. vol. 86, pp. 19–92.

  42. Proc. Int Conf. Low-Energy Disclocation Structures, University of Virginia, Charlottesville, VA, Aug. 14–17, 1989, M.N. Bassim, W.A. Jesser, D. Kuhlmann-Wilsdorf, and G.J. Shiflet, eds., Elsevier Sequoia, Lausanne, 1989 also Mater. Sci. Eng., 1989, vol. A113, pp. 1–454.

  43. Proc. Int. Conf. on Low-Energy Dislocation Structures IV, Univ. of Manitoba, Winnipeg, MB, Canada, June 5–8, M. N. Bassim, W.A. Jesser, and D. Kuhlmann-Wilsdorf, eds., Akademie Verlag, Berlin, 1995; also Phys. Status Solidi, 1995, vol. (a) 149 (1), pp. 1–443.

  44. F.R.N. Nabarro, Z.S. Basinski, and D.B. Holt: Adv. Phys., 1964, vol. 13, p. 193.

    Article  ADS  CAS  Google Scholar 

  45. S.J. Basinski and Z.S. Basinski: in Dislocations in Solids, F.R.N. Nabarro, ed., North Holland Publ. Co., Amsterdam, 1979, vol. 4, p. 261.

    Google Scholar 

  46. R. Phillips: Crystals. Defects and Microstructures—Modeling Across Scales, Cambridge University Press, Cambridge, UK, 2001.

    Google Scholar 

  47. F.R.N. Nabarro: Phil. Mag., 2000, vol. 80, pp. 759–64.

    ADS  CAS  Google Scholar 

  48. A. Seeger: in Workhardening, J.P. Hirth and J. Weertman, eds., Gordon and Breach, New York, NY, 1966, pp. 27–60.

    Google Scholar 

  49. P.B. Hirsch and T.E. Mitchell: in Workhardening, J.P. Hirth and J. Weertman, eds., Gordon and Breach, New York, NY, 1966, pp. 65–91.

    Google Scholar 

  50. J. Friedel and G. Saada: in Workhardening, J.P. Hirth and J. Weertman, eds., Gordon and Breach, New York, NY, 1966, pp. 1–22.

    Google Scholar 

  51. T.E. Mitchell: in Workhardening, J.P. Hirth and J. Weertman, eds., Gordon and Breach, New York, NY, 1966, p. 61.

    Google Scholar 

  52. A. Seeger: Handbuch Phys., 1958, vol. VII/2.

  53. D. Kuhlmann, G. Masing, and J. Raffelsieper: Z. Metallk., 1949, vol. 40, pp. 241–46.

    CAS  Google Scholar 

  54. D. Kuhlmann: Proc. Phys. Soc., 1951, vol. A64, pp. 140–55.

    ADS  Google Scholar 

  55. N.F. Mott: Phil. Mag., 1952, vol. 43, p. 1151.

    Google Scholar 

  56. N.F. Mott: Phil. Mag., 1953, vol. 44, p. 742.

    MATH  CAS  Google Scholar 

  57. H. Wilsdorf and D. Kuhlmann-Wilsdorf: Z. Angew. Phys., 1952, vol. 4, pp. 361–70; 409–18, and 418–24.

    CAS  Google Scholar 

  58. D. Kuhlmann-Wilsdorf and H. Wilsdorf: Acta Metal., 1953, vol. 1, pp. 394–413.

    Article  CAS  Google Scholar 

  59. H. Wilsdorf, D. Kuhlmann-Wilsdorf, and J.H. van der Merwe: Phil. Mag., 1952, vol. 43, pp. 632–44.

    Google Scholar 

  60. H. Mughrabi: Phil. Mag., 1971, vol. 23, pp. 869; 97.

    CAS  Google Scholar 

  61. H. Mughrabi: Acta Metall., 1983, vol. 31, p. 1367.

    Article  CAS  Google Scholar 

  62. Dislocations in Solids, F.R.N. Nabarro, Printer: See Ref. 38.

  63. E.C. Aifantis: J. Eng. Mater. Technol., 1984, vol. 106, p. 326.

    Article  CAS  Google Scholar 

  64. E.C. Aifantis: Mater. Sci. Eng., 1986, vol. 81, p. 563.

    Article  CAS  Google Scholar 

  65. D. Walgraef and E.C. Aifantis: Int. J. Eng. Sci., 1985, vol. 23, pp. 135, 1359, and 1365.

    Google Scholar 

  66. L.P. Kubin: in Materials Science and Technology: A Comprehensive Treatment, R.W. Cahn, P. Haasen, and F.L. Kramer, eds. VCH, Weinheim, 1993, vol. 6, p. 138.

    Google Scholar 

  67. B. Devincre and L.P. Kubin: Mater. Sci. Eng. 1997, vol. A234, p. 8

    Google Scholar 

  68. F.C. Frank: “Pittsburgh Symp. On the Plastic Deformation of Crystalline Solids” Rept. NAVEXOS-P-834, Off. Of Naval Res. Washington, DC, 1950, p. 150.

  69. W.T. Read: Dislocations in Crystals, McGraw-Hill, Inc. New York, NY 1953, p. 181–86.

    MATH  Google Scholar 

  70. W. Bollmann: Crystal Defects and Crystalline Interfaces, Springer, Berlin, 1970.

    Google Scholar 

  71. S. Amelinckx and W. Dekeyser: Solid State Phys. Adv. Res. Appl. 1959, vol. 8, pp. 325–499.

    CAS  Google Scholar 

  72. W.T. Read and W. Shockley: Imperfections in Nearly Perfect Crystals, John Wiley Sons, New York, NY, 1952, ch. 13.

    Google Scholar 

  73. J.H. van der Merwe, J. Woltersdorf, and W.A. Jesser: Mater. Sci. Eng., 1986, vol. 81, pp. 1–33.

    Article  ADS  Google Scholar 

  74. G.J. Shiflet: Mater Sci. Eng., 1986, vol. 81, pp. 61–100.

    Article  CAS  Google Scholar 

  75. D.A. Smith and G. Shiflet: Mater. Sci. Eng., 1987, vol. 86, pp. 67–92.

    Article  CAS  Google Scholar 

  76. S. Solenthaler and W. Bollmann: Mater. Sci. Eng., 1986, vol. 81, pp. 35–59.

    Article  CAS  Google Scholar 

  77. C. Solenthaler: Mater. Sci. Eng., 1989, vol. A113, pp. 95–119.

    Google Scholar 

  78. P. Neumann: Mater. Sci. Eng., 1986, vol. 81, pp. 465–75

    Article  CAS  Google Scholar 

  79. J.T. Moore and D. Kuhlmann-Wilsdorf: J. Appl. Phys., 1970, vol. 41, pp. 4411–17.

    Article  ADS  Google Scholar 

  80. J.T. Moore and D. Kuhlmann-Wilsdorf: J. Appl. Phys., 1971, vol. 42, pp. 953–61.

    Article  ADS  Google Scholar 

  81. J.T. Moore and D. Kuhlmann-Wilsdorf: J. Appl. Phys., 1971, vol. 42, pp. 3717–25.

    Article  ADS  Google Scholar 

  82. J.T. Moore and D. Kuhlmann-Wilsdorf: J. Appl. Phys., 1971, vol. 42, pp. 3726–30.

    Article  ADS  Google Scholar 

  83. J.T. Moore and D. Kuhlmann-Wilsdorf: Grain Boundaries and Interfaces, Proc. Int. Conf. on Structure and Properties of Grain Boundary Interfaces, Yorktown Heights, NY, USA, 1971, P. Chaudhari and J. W. Matthews, eds., North-Holland Publ. Co., 1972, pp. 456–78: also Surface Sci. (Special Issue), 1972, vol. 31, pp. 456–78.

  84. M.N. Bassim and D. Kuhlmann-Wilsdorf: Crystal Lattice Defects, 1973, vol. 4, pp. 9–27.

    Google Scholar 

  85. M.N. Bassim and D. Kuhlmann-Wilsdorf: Phys. Status Solidi, 1973 vol. (a)15, pp. 725–73.

    Google Scholar 

  86. M.N. Bassim and D. Kuhlmann-Wilsdorf: Phys. Status Solidi (a), 1973, vol.16 pp. 241–51.

    Article  Google Scholar 

  87. M.N. Bassim and D. Kuhlmann-Wilsdorf: Phys. Status Solidi, 1973 vol. (a)17, pp. 281–92.

    Google Scholar 

  88. M.N. Bassim and D. Kuhlmann-Wilsdorf: Phys. Status Solidi, 1973, vol. (a)17), pp. 379–93.

    Google Scholar 

  89. M.N. Bassim and D. Kuhlmann-Wilsdorf: Phys. Status Solidi, 1973, vol. (a)19, pp. 335–46.

    Google Scholar 

  90. D. Kuhlmann-Wilsdorf and C. Laird: Mater. Sci. Eng., 1979, vol. 37, pp. 11–20.

    Google Scholar 

  91. D. Kuhlmann-Wilsdorf: Mater. Sci. Eng., 1979, vol. 39, pp. 127–39.

    Article  Google Scholar 

  92. D. Kuhlmann-Wilsdorf: Mater. Sci. Eng., 1979, vol. 39, pp. 231–45.

    Article  CAS  Google Scholar 

  93. C. Laird, P. Charsley, and H. Mughrabi: Mater. Sci. Eng., 1986, vol. 81, pp. 433–50.

    Article  CAS  Google Scholar 

  94. A.T. Winter: Phil. Mag., 1978, vol. 37, p. 457.

    CAS  Google Scholar 

  95. C. Laird, J.M. Finney, and D. Kuhlmann-Wilsdorf: Mater. Sci. Eng., 1981, vol. 50, pp. 127–36.

    Article  CAS  Google Scholar 

  96. C. Laird, P. Charsley, and H. Mughrabi: Mater. Sci. Eng., 1986, vol. 81, pp. 433–50.

    Article  CAS  Google Scholar 

  97. Z.S. Basinski and S.J. Basinski: in Progress in Materials Science, B. Cantor and P.B. Hirsch, eds., Pergamon Press, Oxford, UK, 1992, vol. 36, pp. 89–148.

    Google Scholar 

  98. H.G.F. Wilsdorf: unpublished.

  99. D. Kuhlmann-Wilsdorf: Phys. Status Solidi., 1987, vol. (a)140, pp. 121–44.

    Google Scholar 

  100. A. Beghezan, A. Fourdeux, and S. Amelinckx: Acta Metall., 1961, vol. 9, p. 464.

    Article  Google Scholar 

  101. D. Livingston: Acta Metall., 1962, vol. 10, p. 229.

    Article  CAS  Google Scholar 

  102. P. Charsley: Mater. Sci. Eng., 1981, vol. 41, p. 181.

    Google Scholar 

  103. P. Charsley and D. Kuhlmann-Wilsdorf: Phil. Mag., 1981, vol. A44, pp. 1351–61.

    Google Scholar 

  104. J.I. Dickson, L’Handfield, and G.L. Espérance: Mater. Sci. Eng., 1986, vol. 81, pp. 477–92.

    Article  CAS  Google Scholar 

  105. J.I. Dickson, J. Boutin, and G. L’Espérance: Acta Metall., 1986, vol. 34, pp. 1505–14.

    Article  CAS  Google Scholar 

  106. J.I. Dickson, Hong Bande and G. L’Espérance: Mater. Sci. Eng., 1988, vol. A101, p. 75.

    Google Scholar 

  107. S. Turenne, L ’Espérance, and J.I. Dickson: Acta Metall, 1988, vol. 36, p. 459.

    Article  CAS  Google Scholar 

  108. L. Llanes and C. Laird: Mater. Sci. Eng., 1993, vol. A161., pp. 1–12.

    CAS  Google Scholar 

  109. P. Charsley and L. Harris: private communication, 1986. U. of Surrey, Gt. Britain.

  110. T.H. Courtney: in New Developments and Applications in Composites, D. Kuhlmann-Wilsdorf and W.C. Harrigan, Jr., eds., TMS-AIME, Warrendale, PA, 1979, p. 1–30.

    Google Scholar 

  111. J.C. Malzahn Kampe, T.H. Courtney, and Y. Leng: Acta Metall., 1989, vol. 37, pp. 1735–46.

    Article  Google Scholar 

  112. T.H. Courtney and J.C. Malzahn Kampe: Acta Metall., 1989, vol. 37, pp. 1747–58.

    Article  CAS  Google Scholar 

  113. J.H. Evans: Nature, 1971, vol. 229, pp. 403–04.

    Article  PubMed  ADS  CAS  Google Scholar 

  114. F.R.N. Nabarro: Dislocations, Oxford University Press, Oxford, reprinted at Dover Publications, N 1987; also Adv. Phys., 1952, vol. 1, p. 269.

    MathSciNet  Google Scholar 

  115. J. Weertman and J.A. Weertman: Elementary Dislocation Theory, Oxford University Press, Oxford, UK, 1992.

    Google Scholar 

  116. M.A. Myers and K.K. Chawla: Mechanical Metallurgy—Principles and Applications, Prentice-Hall Inc., Englewood Cliffs, NJ, 1984.

    Google Scholar 

  117. A.H. Cottrell: Dislocations and Plastic Flow in Crystals, McGraw-Hill, New York, NY, 1953.

    MATH  Google Scholar 

  118. R.E. Reed-Hill and R. Abbaschian: Physical Metallurgy Principles, PWS-Kent Publ. Co., Boston, 1993.

    Google Scholar 

  119. W.T. Read: Dislocations in Crystals, McGraw-Hill, Inc., New York, NY, 1953, pp. 181–86.

    Google Scholar 

  120. D. Kuhlmann-Wilsdorf: in Physics of Strength and Plasticity, A.S. Argon eds., M. I. T. Press, Cambridge, MA, 1969, pp. 29–38.

    Google Scholar 

  121. W.A. Jesser and D. Kuhlmann-Wilsdorf: Mater. Sci. Eng., 1981, vol. 61, pp. 31–37.

    Google Scholar 

  122. M. Wilkens: Acta Metall., 1967, vol. 15, p. 1412.

    Article  Google Scholar 

  123. M. Wilkens: Acta Metall., 1969, vol. 17, p. 1155.

    Article  Google Scholar 

  124. U.F. Kocks and R.O. Scttergood: Acta Metall., 1967, vol. 17, p. 1161.

    Google Scholar 

  125. J.T. Moore and D. Kuhlmann-Wilsdorf: Cryst. Lattice Def., 1970, vol. 1, pp. 201–10.

    Google Scholar 

  126. D. Kuhlmann-Wilsdorf and H.D. Nine: J. Appl. Phys., 1967, vol. 38, pp. 1683–93.

    Article  ADS  CAS  Google Scholar 

  127. E.E. Laufer and W.N. Roberts: Phil. Mag., 1966, vol. 14, pp. 65–78.

    CAS  Google Scholar 

  128. D. Kuhlmann-Wilsdorf, E.E. Laufer, and H. Nine: J. Appl. Phys., 1967, vol. 38, pp. 896–98.

    Article  ADS  CAS  Google Scholar 

  129. W. Scoble and S. Weissmann: Cryst. Latt. Def., 1973, vol. 4, pp. 123–36.

    CAS  Google Scholar 

  130. G. Langford and M. Cohen: Trans. ASM, 1969, vol. 62, p. 623.

    CAS  Google Scholar 

  131. D. Kuhlmann-Wilsdorf, S.S. Kulkarni, J.T. Moore, and E.A. Starke: Metall. Mater. Trans., A 1999, vol. 30A, pp. 2491–501.

    Article  CAS  Google Scholar 

  132. H.M. Howe: Metallography of Iron and Steel, McGraw-Hill, New York, NY, 1916.

    Google Scholar 

  133. I.B. Pfeil: Carnegie Schol. Mem., Iron Steel Inst., 1926, vol. 15, p. 319.

    Google Scholar 

  134. I.B. Pfeil: Carnegie Schol. Mem., Iron Steel Inst., 1927, vol. 16, p. 153.

    CAS  Google Scholar 

  135. S.S. Kulkarni, E.A. Starke, Jr., and D. Kuhlmann-Wilsdorf: Acta Metall. Mater. 1998, vol. 46, pp. 5283–301.

    CAS  Google Scholar 

  136. S.S. Kulkarni: Thesis Master’s, University Virginia, Charlottesville, VA, 1997.

    Google Scholar 

  137. H. Mecking and K. Lücke: Acta Met, 1969, vol. 17, p. 279.

    Article  Google Scholar 

  138. H. Mecking and K. Lücke: Z. Metallk., 1969, vol. 60, p. 185.

    CAS  Google Scholar 

  139. H. Mecking: in Work Hardening in Tension and fatigue, A.W. Thompson, ed., AIME, New York, NY, 1977, p. 67.

    Google Scholar 

  140. L.E. Murr and D. Kuhlmann-Wilsdorf: Acta Metall., 1978, vol. 26, pp. 847–57.

    Article  CAS  Google Scholar 

  141. D. Kuhlmann-Wilsdorf and N. Hansen: Metall. Trans., 1989, vol. 20A, pp. 2393–97.

    CAS  Google Scholar 

  142. Kv. Göler and G. Sachs: Z. Phys., 1929, vol. 55, p. 51.

    Google Scholar 

  143. E. Schmid and W. Boas: Plasticity of Crystals, Chapman and Hall, Ltd., London 1950, translated from original 1935 German edition.

  144. J. Meissner: Z. Metallk., 1959, vol. 50, p. 207.

    CAS  Google Scholar 

  145. H.G.F. Wilsdorf and D. Kuhlmann-Wilsdorf: Modelling of Plastic Deformation and Its Engineering Applications 1992, S.I. Andersen, J.B. Bilde-Srensen, N. Hansen, D. Juul Jensen, T. Leffers, H. Lilholt, T. Lorentzen, O.B. Pedersen, and B. Ralph, eds., Risf National Laboratory, Roskilde, Denmark, 13th Risf Int. Symp. On Materials Science, Sept. 7–11, 1992, pp. 511–17.

  146. H.G.F. Wilsdorf and D. Kuhlmann-Wilsdorf: Mater. Sci. Eng., 1993, vol. A164, pp. 1–14.

    CAS  Google Scholar 

  147. Doris Kuhlmann-Wilsdorf and Heinz G.F. Wilsdorf: Z. Metallk. 1993, vol. 84, pp. 278–81.

    CAS  Google Scholar 

  148. E.O. Hall: Proc. Phys. Soc. (London), 1951, vol. 64, p. 747.

    ADS  Google Scholar 

  149. N.J. Petch: (1953) J. Iron Steel Inst., 1953, vol. 174, p. 25.

    CAS  Google Scholar 

  150. A.W. Thompson and M.I. Baskes: Phil. Mag., 1973, vol. 28, p. 301.

    CAS  Google Scholar 

  151. R. Armstrong, I. Codd, R.M. Douthwaite, and N.J. Petch: Phil. Mag., 1962, vol. 7, p. 45.

    CAS  Google Scholar 

  152. M.J. Marcinkowski and R.M. Fisher: Trans. AIME, 1965, vol. 233, p. 293.

    CAS  Google Scholar 

  153. T.L. Johnston and C.E. Feltner: Metall. Trans., 1970, vol. 1, pp. 1161.

    CAS  Google Scholar 

  154. H.J. Rack and M. Cohen: Mater. Sci. Eng., 1970, vol. 6, p. 320.

    Article  CAS  Google Scholar 

  155. R.E. Sanders, S.F. Baumann, and H.C. Stumpf: Proc. Int. Conf. UVA, Charlottesville, VA, 1986; E.A. Starke and R.E. Sanders eds. 1986, Trans. Tech. Publ., Switzerland (Zürich?) also J.E. Hatch: in “Aluminum, Properties and Physical Metallurgy”, ASM, Metals Park, OH, 1984

  156. D. Kuhlmann: Z. Phys., 1947, vol. 124(4), pp. 468–81.

    Google Scholar 

  157. E. Nes: Acta Metall. Mater., 1995, vol. 43, p. 2189.

    Article  CAS  Google Scholar 

  158. D. Kuhlmann-Wilsdorf: Aluminum Alloys: Their Physical and Mechanical Properties, Proc. 7th Int. Conf. ICAA7, Charlottesville, VA, Apr, 2000, Trans Tech Publications, Aedermannsdorfs, Switzerland, E.A. Starke, Jr., T.H. Sanders, Jr. and W.A. Cassada, eds., Mater. Sci. Forum 2000, pp. 689–702.

  159. D.L. Polis and K.I. Winey: Macromolecules, 1996, vol. 29, p. 8180.

    Article  CAS  Google Scholar 

  160. J.W. Mitchell, J.C. Chevrier, B.J. Hockey, and J.P. Monaghan: Can. J. Phys., 1967, vol. 45, p. 453.

    Google Scholar 

  161. B.J. Hockey and J.W. Mitchell: Phil. Mag., 1972, vol. 26, p. 409.

    CAS  Google Scholar 

  162. R.B. Schwarz and J.W. Mitchell: Phys. Rev., 1974, vol. B9, p. 3292.

    ADS  Google Scholar 

  163. D.A. Taliaferro, L.F. Henry, and J.W. Mitchell: J. Appl. Phys., 1974 vol. 45, p. 519.

    Article  ADS  CAS  Google Scholar 

  164. D.A. Taliaferro and J.W. Mitchell: J. Appl. Phys., 1974, vol. 45, p. 523.

    Article  ADS  CAS  Google Scholar 

  165. W.E. Nixon, M.H. Massey, and J.W. Mitchell: Acta Metall., 1979 vol. 27 p. 943.

    Article  CAS  Google Scholar 

  166. J.W. Mitchell: Phys. Status, Solidi, 1993, vol. (a) 135, p. 455.

    Google Scholar 

  167. P. Müllner, C. Solenthaler, P. Uggowitzer, and M.O. Speidel: Mater. Sci. Eng. A, 1993, vol. 164, pp. 164–69.

    Article  Google Scholar 

  168. R.L. Patterson and H.G.F. Wilsdorf: in Fracture H. Liebowitz, ed., Academic Press, New York, 1969, vol. pp. 183–240.

    Google Scholar 

  169. R.G. Treuting and R.M. Brick: Trans. AIME, 1942, vol. 147, p. 128–35.

    Google Scholar 

  170. J.T. Fourie and H.G.F. Wilsdorf: Acta Metall., 1959, vol. 7, p. 339.

    Article  CAS  Google Scholar 

  171. H.G.F. Wilsdorf and D. Kuhlmann-Wilsdorf: Phys. Rev. Lett., 1959 vol. 4, p. 170.

    Article  ADS  Google Scholar 

  172. D. Kuhlmann-Wilsdorf and H.G.F. Wilsdorf: Acta Metall., 1962, vol. 10, p. 584.

    Article  CAS  Google Scholar 

  173. D. Kuhlmann-Wilsdorf, R. Maddin, and H.G.F. Wilsdorf: in Strengthening Mechanism in Solids, J.J. Harwood, ed., ASM, Metals Park, OH, 1962, p. 137.

  174. D. Kuhlmann-Wilsdorf and H.G.F. Wilsdorf: in Electron Microscopy and Strength of Crystals, G. Thomas and J. Washburn, eds., Interscience, New York, NY, 1963, p. 575.

    Google Scholar 

  175. R.H. Geiss, D. Kuhlmann-Wilsdorf, W.J. Tropf, and H.G.F. Wilsdorf: 31st Ann. Electron Microscopy Soc. Am. New Orleans, LA, USA. ed., J. Arceneaux, 1973.

  176. J.E. Bailey and P.B. Hirsch: Phil. Mag., 1960, vol. 5, p. 485.

    CAS  Google Scholar 

  177. K. Sezaki and D. Kuhlmann-Wilsdorf: Acta Metall., 1966, vol. 14, p. 1131.

    Article  CAS  Google Scholar 

  178. J.A. Sigler: Ph.D. Thesis, University of Virginia, Charlottesville, 1967.

    Google Scholar 

  179. H.G.F. Wilsdorf: Am. Soc. Test. Mater. Spec. Techn. Publ. No. 245, USA, 1958, p. 43.

  180. H.G.F. Wilsdorf, D. Kuhlmann-Wilsdorf: J. Nucl. Mater., 1962, vol. 5, p. 178.

    Article  Google Scholar 

  181. G.I. Taylor: Trans. Faraday Soc., 1928, vol. 24, p. 121.

    Article  CAS  Google Scholar 

  182. K. Yamaguchi: Sci. Pap. Inst. Phys. Chem. Res. (Jpn.), 1929, vol. 11. p. 151.

    CAS  Google Scholar 

  183. E. Schmid and W. Boas: Plasticity of Crystals, Chapman and Hall, Ltd., London, 1950, pp. 196–99.

    Google Scholar 

  184. U. Essmann: Phys. Status solidi, 1965 vol. 12, p. 723.

    Google Scholar 

  185. M. Wilkens: Can. J. Phys., 1967, vol. 45, p. 567.

    CAS  Google Scholar 

  186. P. Gassenmeier and M. Wilkens: Phys. Status Solidi., 1968, vol. 30, p. 833.

    CAS  Google Scholar 

  187. C.S. Pande and P.M. Hazzledine: Phil. Mag., 1971, vol. 24, 1393.

    CAS  Google Scholar 

  188. P.J. Jackson and D. Kuhlmann-Wilsdorf: Scripta Metall., 1982, vol. 16, p. 105.

    Article  CAS  Google Scholar 

  189. R.A. Foxall, M.S. Duesbery, and P.B. Hirsch: Can. J. Phys., 1967, vol. 45, p. 903.

    Google Scholar 

  190. Kuhlmann-Wilsdorf: Mater. Sci. Eng., 1987 vol. 86, Fig. 3, p. 53.

    Article  CAS  Google Scholar 

  191. S.V. Raj and G.M. Pharr: Mater. Sci. Eng., 1986, vol. 81, p. 217.

    Article  CAS  Google Scholar 

  192. D. Kuhlmann-Wilsdorf: Scripta Metall. Mater., 1996 vol. 34, pp. 641–50.

    CAS  Google Scholar 

  193. F.R.N. Nabarro and D. Kuhlmann-Wilsdorf, Scripta Metall. Mater., (1996) vol. 35 pp. 1331–33.

    CAS  Google Scholar 

  194. J. Weertman: Proc. R. Soc. (London), 1989, vol. A425, p. 291.

    ADS  MathSciNet  Google Scholar 

  195. J. Weertman: Proc. R. Soc. (London), 1991, vol. A435, p. 69.

    ADS  Google Scholar 

  196. J.A. Hurtado and J. Weertman: Phil. Mag., 1993, vol. A68, p. 599.

    Google Scholar 

  197. J.A. Hurtado and J. Weertman: Phys. Status Solidi, 1995, vol. (a)149, p. 173.

    Google Scholar 

  198. B. Bay, N. Hansen, and D. Kuhlmann-Wilsdorf: Mater. Sci. Eng., 1989, vol. A113, pp. 385–97.

    CAS  Google Scholar 

  199. H.G.F. Wilsdorf: “Symp. on Advances in Electron Metallography,” Special Technical Publication 245, ASTM, USA, (1958), pp. 43–67.

    Google Scholar 

  200. B. Devincre and L.P. Kubin: Mater. Sci. Eng., 1997, vol. A234, p. 8.

    Google Scholar 

  201. T.E. Mitchell and R.L. Smialek: in Workhardening J.P. Hirth and J. Weertman, ed., Gordon and Breach, NY, 1968, p. 365.

  202. H.-J. Kestenbach, W. Krause, and da Silveria: Acta Metall., 1978, vol. 26, p. 661.

    Article  CAS  Google Scholar 

  203. H. Mughrabi: Mater. Sci. Eng., 1978, vol. 33, pp. 207–23

    Article  CAS  Google Scholar 

  204. A.H. Cottrell: Dislocations and Plastic Flow in Crystals, McGraw-Hill, New York, 1953, NY, pp. 111–14.

    MATH  Google Scholar 

  205. D. Kuhlmann-Wilsdorf: Proc. ICSMA 5, Aachen, Germany, Aug. 27–31, 1979, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon, New York, NY, 1979, pp. 1081–87.

    Google Scholar 

  206. R.E. Reed and C.J. McHargue: Trans. AIME, 1967, vol. 239, pp. 1604–12.

    CAS  Google Scholar 

  207. E. Aernoudt and H.P. Stüwe: Z. Metallk, 1970, vol. 61, p. 128.

    CAS  Google Scholar 

  208. C.S. Lee, B.J. Duggan, and R.E. Smallman: Acta Metall. Mater., 1993, vol. 41, p. 2265.

    Article  CAS  Google Scholar 

  209. C.S. Lee and B.J. Duggan: Acta Metall. Mater., 1993, vol. 41, p. 2691.

    Article  CAS  Google Scholar 

  210. C.S. Lee, B.J. Duggan, and R.E. Smallman: Phil. Mag. Lett., 1993, vol. 68, p. 186.

    Google Scholar 

  211. R.E. Smallman and C.S. Lee: Mater. Sci. Eng., 1994, vol. A184, p. 97.

    Google Scholar 

  212. D. Kuhlmann-Wilsdorf and N. Hansen: Scripta Metall. Mater., 1991, vol. 25, pp. 1557–62.

    Article  CAS  Google Scholar 

  213. P. Lin, S.S. Lee, and A.J. Ardell: Acta Metall., 1989, vol. 37, pp. 739–48.

    Article  CAS  Google Scholar 

  214. D.A. Hughes, D.C. Chrzan, Q. Liu, and N. Hansen: Phys. Rev. Lett., 1998 vol. 81, pp. 4664–67.

    Article  ADS  CAS  Google Scholar 

  215. D. Kuhlmann-Wilsdorf, H.G.F. Wilsdorf, and J.A. Wert: Scripta Metall. Mater., 1994, vol. 31, pp. 729–34.

    Article  ADS  CAS  Google Scholar 

  216. E.C. Ellwood: J. Inst. Met., 1951, vol. 80, p. 605.

    Google Scholar 

  217. C.T. Young, T.J. Headley, and J.L. Lytton: Mater. Sci. Eng., 1986, vol. 81, p. 391.

    Article  CAS  Google Scholar 

  218. J.T. Michalak and H.W. Paxton: Trans. AIME, 1961, vol. 221, p. 850.

    CAS  Google Scholar 

Download references

Authors

Additional information

The Edward DeMille Campbell Memorial Lecture was established in 1926 as an annual lecture in memory of and in recognition of the outstanding scientific contributions to the metallurgical profession by a distinguished educator who was blind for all but two years of his professional life. It recognizes demonstrated ability in metallurgical science and engineering.

This lecture was presented to honor Edward DeMille Campbell (University of Michigan, Class of 1886), born in 1863, who was appointed Assistant Professor of Metallurgy in 1890. Dr. Campbell brought a strong interest in the study of the constitution of metals and alloys to the University of Michigan. In 1892, during a study of the composition of steel, he lost his eyesight in a laboratory explosion. Within five days, he returned to the University and resumed his teaching and research. Over the next 30 years, he published 72 research papers and developed a laboratory course in metallography. In 1924, working under the direction of Professor Campbell, William Fink discovered a new, tetragonal form of iron (martensite) in the first significant application of a new tool, X-ray diffraction, to physical metallurgy. It was these experiments that established the beginning of a strong tradition in physical metallurgy at the University of Michigan. In 1898, Campbell led the effort to establish Chemical Engineering at Michigan, becoming Professor of Chemical Engineering and Analytical Chemistry in 1902. In 1914, Campbell was appointed Director of the University’s Chemical Laboratory and Professor of Chemistry. Following his death in 1925, the American Society for Metals established this annual award in his name.

Dr. Kuhlmann-Wilsdorf, a University of Virginia faculty member since 1963, teaches in the Physics Department and in the Engineering School’s Materials Science Department. In 2001, she was named Christopher J. Henderson Inventor of the Year for her improvements to industrial machinery, which include six patented inventions relating to electrical brushes—simple but critically important parts of most motors and generators. These brushes establish the electrical connection between an outside power source and the rotating part of machinery, electrically linking moving and stationary objects, such as an electric train and an overhead electrical cable. The metal-fiber brushes invented by Dr. Kuhlmann-Wilsdorf are critical to the success of homopolar machines, whether motors or generators.

A Fellow and Life Member of ASM International, her research interests are crystal defects, metal surfaces, and mechanical properties, and her research interests focus on workhardening, tribology, melting, and electrical contacts. A native of Germany, she received her bachelor’s, master’s, and doctoral degrees from Göttingen University and a doctor of science degree from South Africa’s University of the Witwatersrand. Her publication list of nearly 300 articles begins in 1947 and runs through the present. “In the academic world you must publish or perish,” Dr. Kuhlmann-Wilsdorf once said. “Since I didn’t want to perish, I published.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhlmann-Wilsdorf, D. Advancing towards constitutive equations for the metal industry via the LEDS theory. Metall Mater Trans A 35, 369–418 (2004). https://doi.org/10.1007/s11661-004-0351-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0351-x

Keywords

Navigation