Skip to main content
Log in

Tensile behavior of fully nanotwinned alloys with varying stacking fault energies

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

In this study, a comparison of the tensile behavior of fully nanotwinned Cu–6 wt.%Al, Cu–2 wt.%Al, and Cu–10 wt.%Ni with stacking fault energies (SFEs) of 6, 37, and 60 mJ/m2, respectively is presented. The samples displayed yield strengths ranging from 830 to 1340 MPa, varying with both alloy content and microstructural parameters. All samples showed low ductility, even though there are tilted twin boundaries present in Cu–10 wt.%Ni. The influence of varying grain width is presented for each alloy and related to both the activation volume and SFE [Figs. 3(a)–3(c)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. L. Lu: Current progress of mechanical properties of metals with nano-scale twins. J. Mater. Sci. Technol. 24, 473 (2008).

    Article  CAS  Google Scholar 

  2. L. Lu, Y. Shen, X. Chen, L. Qian and K. Lu: Ultrahigh strength and high electrical conductivity in copper. Science 304, 422 (2004).

    Article  CAS  Google Scholar 

  3. Y. Zhao, I.C. Cheng, M.E. Kassner and A.M. Hodge: The effect of nano-twins on the corrosion behavior of copper. Acta Mater. 67, 181 (2014).

    Article  CAS  Google Scholar 

  4. Y. Zhao, T.A. Furnish, M.E. Kassner and A.M. Hodge: Thermal stability of highly nanotwinned copper: The role of grain boundaries and texture. J. Mater. Res. 27, 3049 (2012).

    Article  CAS  Google Scholar 

  5. X. Zhang and A. Misra: Superior thermal stability of coherent twin boundaries in nanotwinned metals. Scr. Mater. 66, 860 (2012).

    Article  CAS  Google Scholar 

  6. F.K. Yan, G.Z. Liu, N.R. Tao and K. Lu: Strength and ductility of 316 L aus-tenitic stainless steel strengthened by nano-scale twin bundles. Acta Mater. 60, 1059 (2012).

    Article  CAS  Google Scholar 

  7. G.H. Xiao, N.R. Tao and K. Lu: Strength-ductility combination of nano-structured Cu–Zn alloy with nanotwin bundles. Scr. Mater. 65, 119 (2011).

    Article  CAS  Google Scholar 

  8. K. Lu, F.K. Yan, H.T. Wang and N.R. Tao: Strengthening austenitic steels by using nanotwinned austenitic grains. Scr. Mater. 66, 878 (2012).

    Article  CAS  Google Scholar 

  9. H.T. Wang, N.R. Tao and K. Lu: Strengthening an austenitic Fe–Mn steel using nanotwinned austenitic grains. Acta Mater. 60, 4027 (2012).

    Article  CAS  Google Scholar 

  10. L. Lu, X. Chen, X. Huang and K. Lu: Revealing the maximum strength in nanotwinned copper. Science 323, 607 (2009).

    Article  CAS  Google Scholar 

  11. X.H. Chen, L. Lu and K. Lu: Grain size dependence of tensile properties in ultrafine-grained Cu with nanoscale twins. Scr. Mater. 64, 311 (2011).

    Article  CAS  Google Scholar 

  12. W. Yujie: Scaling of maximum strength with grain size in nanotwinned fcc metals. Phys. Rev. B: Condens. Matter 83, 132104 (4 pp.) (2011).

    Article  Google Scholar 

  13. L. Zhu, H. Ruan, X. Li, M. Dao, H. Gao and J. Lu: Modeling grain size dependent optimal twin spacing for achieving ultimate high strength and related high ductility in nanotwinned metals. Acta Mater. 59, 5544 (2011).

    Article  CAS  Google Scholar 

  14. F.I. Grace and M.C. Inman: Influence of stacking fault energy on dislocation configurations in shock-deformed metals. Metallography 3, 89 (1970).

    Article  CAS  Google Scholar 

  15. W. Li, S. Lu, Q.-M. Hu, S.K. Kwon, B. Johansson and L. Vitos: Generalized stacking fault energies of alloys. J. Phys., Condens. Matter 26, 265005 (2014).

    Article  Google Scholar 

  16. A. Rohatgi, K.S. Vecchio and G.T. Gray III: The influence of stacking fault energy on the mechanical behavior of Cu and Cu–Al alloys: Deformation twinning, work hardening, and dynamic recovery. Metall. Mater. Trans. A 32A, 135 (2001).

    Article  CAS  Google Scholar 

  17. L. Velasco and A.M. Hodge: The mobility of growth twins synthesized by sputtering: Tailoring the twin thickness. Acta Mater. 109, 142 (2016).

    Article  CAS  Google Scholar 

  18. N.M. Heckman, L. Velasco and A.M. Hodge: Influence of twin thickness and grain size on the tensile behavior of fully nanotwinned CuAl alloys. Adv. Eng. Mater. 18, 918 (2016).

    Article  CAS  Google Scholar 

  19. L. Sun, X. He and J. Lu: Atomistic simulation study on twin orientation and spacing distribution effects on nanotwinned Cu films. Philos. Mag. 95, 3467 (2015).

    Article  CAS  Google Scholar 

  20. Z. You, X. Li, L. Gui, Q. Lu, T. Zhu, H. Gao and L. Lu: Plastic anisotropy and associated deformation mechanisms in nanotwinned metals. Acta Mater. 61, 217 (2013).

    Article  CAS  Google Scholar 

  21. T. Zhu and H. Gao: Plastic deformation mechanism in nanotwinned metals: An insight from molecular dynamics and mechanistic modeling. Scr. Mater. 66, 843 (2012).

    Article  CAS  Google Scholar 

  22. P. Gu, M. Dao, R.J. Asaro and S. Suresh: A unified mechanistic model for size-dependent deformation in nanocrystalline and nanotwinned metals. Acta Mater. 59, 6861 (2011).

    Article  CAS  Google Scholar 

  23. L. Xiaoyan, W. Yujie, L. Lei, L. Ke and G. Huajian: Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 464, 877 (2010).

    Article  Google Scholar 

  24. Y. Wang and E. Ma: Strain hardening, strain rate sensitivity, and ductility of nanostructured metals. Mater. Sci. Eng. A 375, 46 (2004).

    Article  Google Scholar 

  25. J.R. Rice: Dislocation nucleation from a crack tip: An analysis based on the Peierls concept. J. Mech. Phys. Solids 40, 239 (1992).

    Article  CAS  Google Scholar 

  26. H. Van Swygenhoven, P.M. Derlet and A.G. Froseth: Stacking fault energies and slip in nanocrystalline metals. Nat. Mater. 3, 399 (2004).

    Article  Google Scholar 

  27. V. Yamakov, D. Wolf, S. Phillpot, A. Mukherjee and H. Gleiter: Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat. Mater. 3, 43 (2004).

    Article  CAS  Google Scholar 

  28. R.J. Asaro and S. Suresh: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 53, 3369 (2005).

    Article  CAS  Google Scholar 

  29. L. Lu, R. Schwaiger, Z. Shan, M. Dao, K. Lu and S. Suresh: Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Mater. 53, 2169 (2005).

    Article  CAS  Google Scholar 

  30. V.F. Zackay: High-Strength Materials (John Wiley & Sons, Inc., New York; London; Sydney, 1965).

    Google Scholar 

  31. H. Conrad: Grain size dependence of the plastic deformation kinetics in Cu. Mater. Sci. Eng., A 341, 216 (2003).

    Article  Google Scholar 

  32. R.J. Asaro, P. Krysl and B. Kad: Deformation mechanism transitions in nanoscale fcc metals. Philos. Mag. Lett. 83, 733 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea M. Hodge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heckman, N.M., Velasco, L. & Hodge, A.M. Tensile behavior of fully nanotwinned alloys with varying stacking fault energies. MRS Communications 7, 253–258 (2017). https://doi.org/10.1557/mrc.2017.32

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.32

Navigation