Skip to main content
Log in

Role of stacking fault energy and strain rate in strengthening of Cu and Cu–Al alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Cu and Cu–Al alloys with different stacking fault energies (SFEs) were processed using rolling and the Split Hopkinson pressure bar followed by rolling. The effect of strain rate on the microstructures and mechanical properties of the alloys were investigated using x-ray diffraction analyses, transmission electron microscopy, and tensile tests. Tensile testing results demonstrated that the strength and ductility of the samples increased simultaneously with decreasing SFE. Microstructural observations indicated that the average grain size of the samples decreased with decreasing SFE, but the twin and dislocation densities increased. With decreasing SFE, twinning becomes the dominant deformation mechanism. Our findings indicated that the SFEs significantly affect the strength and ductility of the materials because they play a key role in determining the deformation mechanism. Decreasing the SFE of Cu alloys has proved to be the optimum method to improve the ductility without compromising the strength of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. H. Li, J.Q. Zhou, R.T. Zhu, and X. Ling: The evolution of porosity in bulk nanocrystalline materials during plastic deformation and its effect on the mechanical behavior. Mater. Des. 31, 1003 (2010).

    Article  CAS  Google Scholar 

  2. R.Z. Valiev and T.G. Langdon: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881 (2006).

    Article  CAS  Google Scholar 

  3. C.C. Koch: Synthesis of nanostructured materials by mechanical milling: Problems and opportunities. Nanostruct. Mater. 9, 13 (1997).

    Article  CAS  Google Scholar 

  4. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai: Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process. Acta Mater. 47, 579 (1999).

    Article  CAS  Google Scholar 

  5. A.P. Zhilyaev and T.G. Langdon: Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 53, 893 (2008).

    Article  CAS  Google Scholar 

  6. Y.Z. Tian, X.H. An, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon: Direct observations of microstructural evolution in a two-phase Cu–Ag alloy processed by high-pressure torsion. Scr. Mater. 63, 65 (2010).

    Article  CAS  Google Scholar 

  7. Y.Z. Tian, W.Z. Han, H.J. Yang, S.X. Li, S.D. Wu, and Z.F. Zhang: Shear banding observations in Cu–16 wt% Ag alloy subjected to one-pass equal channel angular pressing. Scr. Mater. 62, 183 (2010).

    Article  CAS  Google Scholar 

  8. Z.F. Zhang, S.D. Wu, Y.J. Li, S.M. Liu, and Z.G. Wang: Cyclic deformation and fatigue properties of Al–0.7 wt% Cu alloy produced by equal channel angular pressing. Mater. Sci. Eng., A 412, 279 (2005).

    Article  CAS  Google Scholar 

  9. C.X. Huang, K. Wang, S.D. Wu, Z.F. Zhang, G.Y. Li, and S.X. Li: Deformation twinning in polycrystalline copper at room temperature and low strain rate. Acta Mater. 54, 655 (2006).

    Article  CAS  Google Scholar 

  10. K. Han, R.P. Walsh, A. Ishmaku, V. Toplosky, L. Brandao, and J.D. Embury: High strength and high electrical conductivity bulk Cu. Philos. Mag. 84, 3705 (2004).

    Article  CAS  Google Scholar 

  11. D.A. Hughes and N. Hansen: Microstructure and strength of nickel at large strains. Acta Mater. 48, 2985 (2000).

    Article  CAS  Google Scholar 

  12. F.D. Torre, R. Lapovok, J. Sandlin, P.F. Thomson, and C.H.J. Davies: Microstructures and properties of copper processed by equal channel angular extrusion for 1–16 passes. Acta Mater. 52, 4819 (2004).

    Article  CAS  Google Scholar 

  13. O.V. Mishin and G. Gottstein: Microstructural aspects of rolling deformation in ultrafine-grained copper. Philos. Mag. A 78, 373 (1998).

    Article  CAS  Google Scholar 

  14. C.C. Koch: Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr. Mater. 49, 657 (2003).

    Article  CAS  Google Scholar 

  15. Y.H. Zhao, X.Z. Liao, Z. Horita, T.G. Langdon, and Y.T. Zhu: Determining the optimal stacking fault energy for achieving high ductility in ultrafine-grained Cu–Zn alloys. Mater. Sci. Eng., A 493, 123 (2008).

    Article  CAS  Google Scholar 

  16. X.H. An, W.Z. Han, C.X. Huang, P. Zhang, G. Yang, S.D. Wu, and Z.F. Zhang: High strength and utilizable ductility of bulk ultrafine-grained Cu–Al alloys. Appl. Phys. Lett. 92, 201915 (2008).

    Article  CAS  Google Scholar 

  17. H. Bahmanpour, A. Kauffmann, M.S. Khoshkhoo, K.M. Youssef, S. Mula, J. Freudenberger, J. Eckert, R.O. Scattergood, and C.C. Koch: Effect of stacking fault energy on deformation behavior of cryo-rolled copper and copper alloys. Mater. Sci. Eng., A 529, 230 (2011).

    Article  CAS  Google Scholar 

  18. Y.S. Li, Y. Zhang, N.R. Tao, and K. Lu: Effect of the Zener–Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation. Acta Mater. 57, 761 (2009).

    Article  CAS  Google Scholar 

  19. F. Huang and N.R. Tao: Effects of strain rate and deformation temperature on microstructures and hardness in plastically deformed pure aluminum. J. Mater. Sci. Technol. 27, 1 (2011).

    Article  Google Scholar 

  20. C.C. Koch, D.G. Morris, K. Lu, and A. Inoue: Ductility of nanostructured materials. Mater. Res. Soc. Bull. 24, 54 (1999).

    Article  CAS  Google Scholar 

  21. L.E. Murr: Interfacial Phenomena in Metals and Alloys (Addison-Wesley Publishing Co., New York, NY, 1975), pp. 87–164.

    Google Scholar 

  22. B.S. Murty, T. Venugopal, and K.P. Rao: Mechanical and electrical properties of Cu-Ta nanocomposites prepared by high-energy ball milling. Acta Metall. 55, 4439 (2007).

    Google Scholar 

  23. R.E. Smallman and K.H. Westmacott: Stacking faults in face-centred cubic metals and alloys. Philos. Mag. 2, 669 (1957).

    Article  CAS  Google Scholar 

  24. G.K. Williamson and R.E. Smallman: Dislocation densities in some annealed and cold-worked metals from measurements on the x-ray Debye-Scherrer spectrum. Philos. Mag. 1, 34 (1956).

    Article  CAS  Google Scholar 

  25. J.B. Cohen and C.N.J. Wagner: Determination of twin fault probabilities from the diffraction patterns of fcc metals and alloys. J. Appl. Phys. 33, 2073 (1962).

    Article  CAS  Google Scholar 

  26. C.N.J. Wagner: Stacking faults by low-temperature cold work in copper and alpha brass. Acta Metall. 5, 427 (1957).

    Article  CAS  Google Scholar 

  27. N. Hansen: Hall–Petch relation and boundary strengthening. Scr. Mater. 51, 801 (2004).

    Article  CAS  Google Scholar 

  28. X.X. Huang: Tailoring dislocation structures and mechanical properties of nanostructured metals produced by plastic deformation. Scr. Mater. 60, 1078 (2009).

    Article  CAS  Google Scholar 

  29. R. Labusch: A statistical theory of solid solution hardening. Phys. Status Solidi 41, 659 (1970).

    Article  Google Scholar 

  30. O. Vöhringer: The influence of alloy type and concentration on the yield point of alpha-copper alloys. Z. Metallkde. 65, 352 (1974).

    Google Scholar 

  31. R.L. Fleischer: Substitutional solution hardening. Acta Metall. 11, 203 (1963).

    Article  CAS  Google Scholar 

  32. S. Nagarjuna, M. Srinivas, and K.K. Sharma: The grain size dependence of flow stress in a Cu–26Ni–17Zn alloy. Acta Mater. 48, 1807 (2000).

    Article  CAS  Google Scholar 

  33. E.O. Hall: The deformation and ageing of mild steel: III Discussion of results. Proc. Phys. Soc. B 64, 747 (1951).

    Article  Google Scholar 

  34. N.J. Petch: The cleavage strength of poly-crystals. J. Iron Steel Inst., London 174, 25 (1953).

    CAS  Google Scholar 

  35. K. Lu, L. Lu, and S. Suresh: Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349 (2009).

    Article  CAS  Google Scholar 

  36. Y.F. Shen, L. Lu, Q.H. Lu, Z.H. Jin, and K. Lu: Tensile properties of copper with nano-scale twins. Scr. Mater. 52, 989 (2005).

    Article  CAS  Google Scholar 

  37. W.J. Babyak and F.N. Rhines: The relationship between the boundary area and hardness of recrystallized cartridge brass. Trans. Metall. Soc. AIME 218, 21 (1960).

    Google Scholar 

  38. Y. Zhang, N.R. Tao, and K. Lu: Effects of stacking fault energy, strain rate and temperature on microstructure and strength of nanostructured Cu–Al alloys subjected to plastic deformation. Acta Mater. 59, 6048 (2011).

    Article  CAS  Google Scholar 

  39. T.D. Shen and C.C. Koch: Formation, solid solution hardening and softening of nanocrystalline solid solutions prepared by mechanical attrition. Acta Mater. 44, 753 (1996).

    Article  CAS  Google Scholar 

  40. Y.H. Zhao, Z. Horita, T.G. Langdon, and Y.T. Zhu: Evolution of defect structures during cold rolling of ultrafine-grained Cu and Cu–Zn alloys: Influence of stacking fault energy. Mater. Sci. Eng., A 474, 342 (2008).

    Article  CAS  Google Scholar 

  41. J. Gubicza, N.Q. Chinh, J.L. Lábár, Z. Hegedus, and T.G. Langdon: Principles of self-annealing in silver processed by equal-channel angular pressing: The significance of a very low stacking fault energy. Mater. Sci. Eng., A 527, 752 (2010).

    Article  CAS  Google Scholar 

  42. L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu: Ultrahigh strength and high electrical conductivity in copper. Science 304, 422 (2004).

    Article  CAS  Google Scholar 

  43. Y.H. Zhao, J.F. Bingert, X.Z. Liao, B.Z. Cui, K. Han, A. V. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon, and Y.T. Zhu: Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper. Adv. Mater. 18, 2949 (2006).

    Article  CAS  Google Scholar 

  44. J.W. Christian and S. Mahajan: Deformation twinning. Prog. Mater. Sci. 39, 1 (1995).

    Article  Google Scholar 

  45. A. Rohatgi, K.S. Vecchio, and G.T. Gray, III: A metallographic and quantitative analysis of the influence of stacking fault energy on shock-hardening in Cu and Cu–Al alloys. Acta Mater. 49, 427 (2001).

    Article  CAS  Google Scholar 

  46. C. Zener and J.H. Hollomon: Effect of strain rate upon plastic flow of steel. J. Appl. Phys. 15, 22 (1944).

    Article  Google Scholar 

  47. G.H. Xiao, N.R. Tao, and K. Lu: Effects of strain, strain rate and temperature on deformation twinning in a Cu–Zn alloy. Scr. Mater. 59, 975 (2008).

    Article  CAS  Google Scholar 

  48. Y.S. Li, Y. Zhang, N.R. Tao, and K. Lu: Effect of thermal annealing on mechanical properties of a nanostructured copper prepared by means of dynamic plastic deformation. Scr. Mater. 59, 475 (2008).

    Article  CAS  Google Scholar 

  49. U.F. Kocks, A.S. Argon, and M.F. Ashby: Thermodynamics and kinetics of slip. Prog. Mater. Sci. 19, 26 (1975).

    Google Scholar 

  50. K. Wang, N.R. Tao, G. Liu, J. Lu, and K. Lu: Plastic strain-induced grain refinement at the nanometer scale in copper. Acta Mater. 54, 5281 (2006).

    Article  CAS  Google Scholar 

  51. N. Hansen: Cold deformation microstructures. Mater. Sci. Technol. 6, 1039 (1990).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are greatly grateful to the National Natural Science Foundation of China (NSFC), Grant Nos. 50874056 and 51361017, and the Australian Research Council (ARC) through the ARC Discovery Project DP110101974 to CW for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinkun Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, B., Long, Y., Wen, C. et al. Role of stacking fault energy and strain rate in strengthening of Cu and Cu–Al alloys. Journal of Materials Research 29, 1747–1754 (2014). https://doi.org/10.1557/jmr.2014.210

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.210

Navigation