Skip to main content
Log in

Chill-zone aluminum alloys with GPa strength and good plasticity

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Using a cold graphite mold casting method, bulk AlNiY chill-zone alloys were prepared at hypereutectic compositions with Al content from 85 at.% to 94 at.%. It was found that ultra-hard surface layers with a thickness of about 200 μm and submicron grain size form when the melt can be undercooled without heterogeneous nucleation at the mold contact surface. This hard chill-zone forming in contact with the mold possesses Vickers microhardness Hv about 350–420 and is thus harder than fully amorphous Al alloys. In compression, ultimate strength more than 1.1 GPa and true strain more than 150% without failure were achieved simultaneously. The combination of high strength and good plasticity will be discussed in relation to the special structure of the chill-zone alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Davis: Concise Metals Engineering Data Book (ASM International, Materials Park, OH, 1997), p. 112.

    Google Scholar 

  2. A.L. Greer and E. Ma: Bulk metallic glasses: At the cutting edge of metals research. MRS Bull. 32, 611 (2007).

    Article  CAS  Google Scholar 

  3. A.R. Yavari, J.J. Lewandowski, and J. Eckert: Mechanical properties of bulk metallic glasses. MRS Bull. 32, 635 (2007).

    Article  CAS  Google Scholar 

  4. A.P. Tsai, A. Inoue, and T. Masumoto: Formation of metal-metal type aluminum-based amorphous alloys. Metall. Trans. A 19, 1369 (1988).

    Article  Google Scholar 

  5. A. Inoue, K. Ohtera, T. Zhang, and T. Masumoto: New amorphous Al-Ln (Ln=Pr, Nd, Sm or Gd) alloys prepared by melt spinning. Jpn. J. Appl. Phys. 27, L1583 (1988).

    Article  CAS  Google Scholar 

  6. J.H. Paik, W.J. Botta, and A.R. Yavari: Al-Based nanostructure obtained from amorphous precursors. Mater. Sci. Forum 225-227, 305 (1996).

    Google Scholar 

  7. Y. He, S.J. Poon, and G.J. Shiflet: Synthesis and properties of metallic glasses that contain aluminum. Science 241, 1640 (1988).

    Article  CAS  Google Scholar 

  8. D.V. Louzguine, A.R. Yavari, and A. Inoue: Mischmetal as an alloying addition to amorphous materials and glass formers. J. Non-Cryst. Solids 316, 255 (2003).

    Article  CAS  Google Scholar 

  9. T.W. Wilson, H. Choo, W.D. Porter, S.A. Speakman, C. Fan, and P.K. Liaw: Amorphization and crystallization processes of the ball-milled Al-Y-Fe-TM alloys (TM = Ni, Co, Cu, and Fe). J. Non-Cryst. Solids 352, 4024 (2006).

    Article  CAS  Google Scholar 

  10. O.N. Senkov, S.V. Senkova, J.M. Scott, and D.B. Miralce: Compaction of amorphous aluminum alloy powder by direct extrusion and equal channel angular extrusion. Mater. Sci. Eng., A 393, 12 (2005).

    Article  Google Scholar 

  11. A.R. Yavari, W.J. Botta, C.A.D. Rodrigues, C. Cardoso, and R. Z. Valiev: Nanostructured bulk Al90Fe5Nd5 prepared by cold consolidation of gas atomised powder using severe plastic deformation. Scr. Mater. 46, 711 (2002).

    Article  CAS  Google Scholar 

  12. W.S. Sanders, J.S. Warner, and D.B. Miralce: Stability of Al-rich glasses in the Al-La-Ni system. Intermetallics 14, 348 (2006).

    Article  CAS  Google Scholar 

  13. V. Rontó, L. Battezzati, A.R. Yavari, M. Tonegaru, N. Lupu, and G. Heunen: Crystallization behavior of Al87Ni7La6 and Al87Ni7Sm6 amorphous alloys. Scr. Mater. 50, 839 (2004).

    Article  Google Scholar 

  14. Zs. Kovács, P. Henits, A.P. Zhilyaev, and Á. Révész: Deformation induced primary crystallization in a thermally non-primary crystallizing amorphous Al85Ce8Ni5Co2 alloy. Scr. Mater. 54, 1733 (2006).

    Article  Google Scholar 

  15. L. Wang, L. Ma, H. Kimura, and A. Inoue: Amorphous forming ability and mechanical properties of rapidly solidified Al-Zr- LTM (LTM=Fe, Co, Ni and Cu) alloys. Mater. Lett. 52, 47 (2002).

    Article  CAS  Google Scholar 

  16. H.S. Kim: Hardening behavior of partially crystallised amorphous Al alloys. Mater. Sci. Eng., A 304–306, 327 (2001).

    Article  Google Scholar 

  17. H. Chen, Y. He, G.J. Shiflet, and S.J. Poon: Mechanical properties of partially crystallized aluminum based metallic glasses. Scr. Metall. Mater. 25, 1421 (1991).

    Article  CAS  Google Scholar 

  18. A. Inoue: Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog. Mater. Sci. 43, 365 (1998).

    Article  CAS  Google Scholar 

  19. J. Campbell: Castings, 2nd ed. (Butterworth-Heinernamm, London, 2003), pp. 131, 139.

    Google Scholar 

  20. A.R. Yavari, K. Ota, K. Georgarakis, A. Le Moulec, F. Charlot, G. Vaughan, A.L. Greer, and A. Inoue: Chill zone copper with the strength of stainless steel and tailorable color. Acta Mater. 56, 1830 (2008).

    Article  CAS  Google Scholar 

  21. A. Inoue and W. Zhang: Formation, thermal stability and mechanical properties of Cu-Zr and Cu-Hf binary glassy alloy rods. Mater. Trans., JIM 45, 584 (2004).

    Article  CAS  Google Scholar 

  22. D. Turnbull: Under what conditions can a glass be formed?Contemp. Phys. 10, 473 (1969).

    Article  CAS  Google Scholar 

  23. A.R. Yavari and O. Drbohlav: Thermodynamics and kinetics of nanostructure formation in soft-magnetic nanocrystalline alloys. Mater. Trans., JIM 7, 896 (1995).

    Article  Google Scholar 

  24. ASM Alloys Phase Diagram Center: http://www.asminternational.org/asmenterprise/apd/.

  25. D. Wang, H. Tan, and Y. Li: Multiple maxima of GFA in three adjacent eutectics in Zr-Cu-Al alloy system—A metallographic way to pinpoint the best glass forming alloys. Acta Mater. 53, 2969 (2005).

    Article  CAS  Google Scholar 

  26. R.E. Gladyshevskii, K. Cenzual, and E. Parthe: The crystal structure of orthorhombic Gd3Ni5Al19, a new representative of the structure series R2+mT4+mAl15+4m. J. Solid State Chem. 100, 9 (1992).

    Article  CAS  Google Scholar 

  27. A.L. Vasiliev, M. Aindow, M.J. Blackburn, and T.J. Watson: Phase stability and microstructure in devitrified Al-rich Al-Y-Ni alloys. Intermetallics 12, 349 (2004).

    Article  CAS  Google Scholar 

  28. T. Mika, M. Karolus, G. Haneczok, L. Bednarska, E. Lagiewka, and B. Kotur: Influence of Gd and Fe on crystallization of Al87Y5Ni8 amorphous alloy. J. Non-Cryst. Solids 345, 3099 (2008).

    Article  Google Scholar 

  29. V. Keryvin: Indentation of bulk metallic glasses: Relationships between shear bands observed around the prints and hardness. Acta Mater. 55, 2565 (2007).

    Article  CAS  Google Scholar 

  30. Y.K. Xu, H. Ma, J. Xu, and E. Ma: Mg-based bulk metallic glass composites with plasticity and gigapascal strength. Acta Mater. 53, 1857 (2005).

    Article  CAS  Google Scholar 

  31. A. Peker and W.L. Johnson: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 (1993).

    Article  Google Scholar 

  32. H. Luo, L. Shaw, L.C. Zhang, and D. Miracle: On tension/ compression asymmetry of an extruded nanocrystalline Al-FeCr-Ti alloy. Mater. Sci. Eng., A 409, 249 (2005).

    Article  Google Scholar 

  33. J.E. Bringas and M. Wayman: The Metals Red Book (CASTI Publishing Inc., 2003).

    Google Scholar 

  34. Q. Wei, T. Jiao, S.N. Mathaudhu, E. Ma, K.T. Hartwig, and K. T. Ramesh: Microstructure and mechanical properties of tantalum after equal channel angular extrusion (ECAE). Mater. Sci. Eng., A 358, 266 (2003).

    Article  Google Scholar 

  35. J. Lu, G. Ravichandran, and W.L. Johnson: Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater. 51, 3429 (2003).

    Article  CAS  Google Scholar 

  36. H. Li, G. Subhash, X-L. Gao, L.J. Kecskes, and R.J. Dowding: Negative strain rate sensitivity and compositional dependence of fracture strength in Zr/Hf based bulk metallic glasses. Scr. Mater. 49, 1087 (2003).

    Article  CAS  Google Scholar 

  37. R. Valiev: Materials science nanomaterial advantage. Nature 419, 887 (2002).

    Article  CAS  Google Scholar 

  38. D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Dementriou, and W.L. Johnson: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Reza Yavari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Georgarakis, K., Pang, S. et al. Chill-zone aluminum alloys with GPa strength and good plasticity. Journal of Materials Research 24, 1513–1521 (2009). https://doi.org/10.1557/jmr.2009.0171

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0171

Navigation