Skip to main content
Log in

Structure and Properties of New Heat-Resistant Cast Alloys Based on the Al–Cu–Y and Al–Cu–Er Systems

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The microstructure and mechanical properties of new high-temperature casting aluminum alloys Al–5.6Cu–2.0Y–1Mg–0.8Mn–0.3Zr–0.15Ti–0.15Fe–0.15Si and Al–5.4Cu–3.0Er–1.1Mg–0.9Mn–0.3Zr–0.15Ti–0.15Fe–0.15Si are investigated. In an alloy with yttrium, modification with titanium gives rise to a decrease in the grain size from 190 to 40 μm, while the grain size in an alloy with erbium is 25 μm. Regarding the casting properties, the alloys are comparable to silumins alloyed with copper and magnesium. The greatest strengthening effect after quenching is achieved with aging at 210°C; the hardness is 130–133 HV. The tensile yield point at room temperature is 303–306 MPa with a relative elongation of 0.4%. At elevated temperatures of 200 and 250°C, the yield stress decreases to 246–250 and 209–215 MPa, and the elongation increases to 3 and 4–5.5%, respectively. The long-term strength retention after 100 h exposure to 250°C is 117–118 MPa. The presence of a solid solution that is sufficiently alloyed and strengthening dispersoids of the Al3(Zr,Er), Al3(Zr,Y), and Al20Cu2Mn3 phases and the Al8Cu4Y, (Al,Cu)11Y3, (Al,Cu,Y,Mn), Al8Cu4ErAl3Er, and (Al,Cu,Er,Mn) phases of crystallization origin in new alloys provide high levels of heat resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. GOST 1583–93. Casting Aluminum Alloys. Technical Conditions (IPK Izd-vo standartov, Minsk, 2000) [in Russian].

  2. V. S. Zolotorevsky and N. A. Belov, Metal Science of Casting Aluminum Alloys (MISiS, Moscow, 2005).

  3. V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting Aluminum Alloys (Alcoa Technical Center, Alcoa Center, 2007).

    Book  Google Scholar 

  4. I. I. Novikov, Hot Brittleness of Nonferrous Metals and Alloys (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  5. V. S. Zolotorevskiy and A. V. Pozdniakov, “Determining the hot cracking index of Al–Si–Cu–Mg casting alloys calculated using the effective solidification range,” Int. J. Cast Met. Res. 27, 193–198 (2014).

    Article  Google Scholar 

  6. V. S. Zolotorevskiy, A. V. Pozdniakov, and A. Yu. Churyumov, “Search for promising compositions for developing new multiphase casting alloys based on Al–Cu–Mg matrix using thermodynamic calculations and mathematic simulation,” Phys. Met. Metallogr. 113, 1052–1060 (2012).

    Article  Google Scholar 

  7. P. K. Shurkin, N. A. Belov, A. F. Musin, and A. A. Akse-nov, “ New high-strength casting aluminum alloy based on the Al–Zn–Mg–Ca–Fe system without requirement for heat treatment,” Izv. Vuzov. Tsvetn. Metall., No. 1, 48-58 (2020).

  8. P. K. Shurkin, N. A. Belov, A. F. Musin, and M. E. Samokhina, “Effect of calcium and silicon on the character of solidification and strengthening of the Al–8% Zn–3% Mg alloy,” Phys. Met. Metallogr. 121, No. 2, 135–142 (2020).

    Article  CAS  Google Scholar 

  9. N. A. Belov, A. V. Khvan, and A. N. Alabin, “Microstructure and phase composition of Al–Ce–Cu alloys in the Al-rich corner,” Mater. Sci. Forum 519–521(PART 1), 395–400 (2006).

    Article  Google Scholar 

  10. N. A. Belov and A. V. Khvan, “The ternary Al–Ce–Cu phase diagram in the aluminum-rich corner,” Acta Mater. 55, 5473–5482 (2007).

    Article  CAS  Google Scholar 

  11. A. V. Pozdniakov and R. Y. Barkov, “Microstructure and materials characterisation of the novel Al–Cu–Y alloy,” Mater. Sci. Technol. 34, No. 12, 1489–1496 (2018).

    Article  CAS  Google Scholar 

  12. S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasi-binary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121, 476–482 (2020).

    Article  CAS  Google Scholar 

  13. A. V. Pozdnyakov, R. Y. Barkov, Z. Sarsenbaev, S. M. Amer, and A. S. Prosviryakov, “Evolution of microstructure and mechanical properties of a new Al–Cu–Er wrought alloy,” Phys. Met. Metallogr. 120, 614–619 (2019).

    Article  CAS  Google Scholar 

  14. N. A. Belov, E. A. Belov, E. A. Naumova, T. A. Bazlova, and E. V. Alekseeva, “Structure, phase composition, and strengthening of cast Al–Ca–Mg–Sc alloys,” Phys. Met. Metallogr. 117, No. 2, 188–194 (2016).

    Article  CAS  Google Scholar 

  15. A. V. Pozdnyakov, A. A. Osipenkova, D. A. Popov, S. V. Makhov, and V. I. Napalkov, “Effect of low additives of Y, Sm, Gd, Hf and Er on the structure and hardness of alloy Al–0.2% Zr–0.1% Sc,” Metalloved. Term. Obr. Met. 58, No. 9, 25–30 (2016).

    Google Scholar 

  16. A. V. Pozdnyakov, V. Yarasu, R. Yu. Barkov, O. A. Yakov-tseva, S. V. Makhov, and V. I. Napalkov, “Microstructure and mechanical properties of novel Al–Mg–Mn–Zr–Sc–Er alloy,” Mater. Lett. 202, 116–119 (2017).

    Article  Google Scholar 

  17. H. L. Hao, D. R. Ni, Z. Zhang, D. Wang, B. L. Xiao, and Z. Y. Ma, “Microstructure and mechanical properties of Al–Mg–Er sheets jointed by friction stir welding,” Mater. Des. 52, 706–712 (2013).

    Article  CAS  Google Scholar 

  18. R. Yu. Barkov, A. S. Prosviryakov, M. G. Khomutov, and A. V. Pozdnyakov, “Influence of Zr and Er contents on the structure and properties of Al–5Si–1.3Cu–0.5Mg alloy,” Phys. Met. Metallogr. (2021) (in press).

  19. A. V. Pozdnyakov, R. Yu. Barkov, A. S. Prosviryakov, A. Yu. Churyumov, I. S. Golovin, and V. S. Zolotorevskiy, “Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al–Er–Y alloy,” J. Alloys Compd. 765, 1–6 (2018).

    Article  Google Scholar 

  20. A. V. Pozdnyakov and R. Yu. Barkov, “Microstructure and mechanical properties of novel Al–Y–Sc alloys with high thermal stability and electrical conductivity,” J. Mater. Sci. Technol. 36, 1–6 (2020).

    Article  Google Scholar 

  21. Y. Zhang, K. Gao, S. Wen, H. Huang, Z. Nie, and D. Zhou, “The study on the coarsening process and precipitation strengthening of Al3Er precipitate in Al–Er binary alloy,” J. Alloys Compd. 610, 27–34 (2014).

    Article  CAS  Google Scholar 

  22. S. P. Wen, K. Y. Gao, Y. Li, H. Huang, and Z. R. Nie, “Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy,” Scr. Mater. 65, 592–595 (2011).

    Article  CAS  Google Scholar 

  23. S. P. Wen, K. Y. Gao, H. Huang, W. Wang, and Z. R. Nie, “Precipitation evolution in Al–Er–Zr alloys during aging at elevated temperature,” J. Alloys Compd. 574, 92–97 (2013).

    Article  CAS  Google Scholar 

  24. Y. Zhang, H. Gao, Y. Kuai, Y. Han, J. Wang, B. Sun, S. Gu, and W. You, “Effects of Y additions on the precipitation and recrystallization of Al–Zr alloys,” Mater. Charact. 86, 1–8 (2013).

    Article  Google Scholar 

  25. Y. Zhang, J. Gu, Y. Tian, H. Gao, J. Wang, and B. Sun, “Microstructural evolution and mechanical properties of Al–Zr and Al–Zr–Y alloys,” Mater. Sci. Eng., A 616, 132–140 (2014).

    Article  CAS  Google Scholar 

  26. M. Song, K. Du, Z. Y. Huang, H. Huang, Z. R. Nie, and H. Q. Ye, “Deformation-induced dissolution and growth of precipitates in an Al–Mg–Er alloy during high-cycle fatigue,” Acta Mater. 81, 409–419 (2014).

    Article  CAS  Google Scholar 

  27. S. P. Wen, W. Wang, W. H. Zhao, X. L. Wu, K. Y. Gao, H. Huang, and Z. R. Nie, “Precipitation hardening and recrystallization behavior of Al–Mg–Er–Zr alloys,” J. Alloys Compd. 687, 143–151 (2016).

    Article  CAS  Google Scholar 

  28. R. Yu. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mater. Lett. 217, 135–138 (2018).

    Article  CAS  Google Scholar 

  29. R. Yu. Barkov, A. G. Mochugovskii, M. G. Khomutov, and A. V. Pozdnyakov, “Effect of Zr and Er small additives on the phase composition and mechanical properties of Al–5Si–1.3Cu–0.5Mg alloy,” Phys. Met. Metallogr. 122, No. 2, 161–168 (2021).

    Article  CAS  Google Scholar 

  30. M. Li, H. Wang, Z. Wei, and Z. Zhu, “The effect of Y on the hot-tearing resistance of Al–5 wt % Cu based alloy,” Mater. Des. 31, 2483–2487 (2010).

    Article  CAS  Google Scholar 

  31. L. Zhang, P. J. Masset, F. Cao, F. Meng, L. Liu, and Z. Jin, “Phase relationships in the Al-rich region of the Al–Cu–Er system,” J. Alloys Compd. 509, 3822–3831 (2011).

    Article  CAS  Google Scholar 

  32. A. V. Pozdnyakov, R. Yu. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019).

    Article  Google Scholar 

  33. S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, I. S. Loginova, and A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Technol. 36, No. 4, 453–459 (2020).

    Article  CAS  Google Scholar 

  34. S. M. Amer, O. A. Yakovtseva, I. S. Loginova, S. V. Medvedeva, A. S. Prosviryakov, A. I. Bazlov, R. Yu. Barkov, and A. V. Pozdniakov, “The phase composition and mechanical properties of the novel precipitation-strengthening Al–Cu–Er–Mn–Zr alloy,” Appl. Sci. 10, No. 15, 5345–5353 (2020).

    Article  CAS  Google Scholar 

  35. S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of Mn on the phase composition and properties of Al–Cu–Y–Zr alloy,” Phys. Met. Metallogr. 121, No. 12, 1227–1232 (2020).

    Article  CAS  Google Scholar 

  36. S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasibinary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121, No. 5, 476–482 (2020).

    Article  CAS  Google Scholar 

  37. S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of iron and silicon impurities on phase composition and mechanical properties of Al–6.3Cu–3.2Y alloy,” Phys. Met. Metallogr. 121, No. 10, 1002–1007 (2020).

    Article  CAS  Google Scholar 

  38. GOST 4784-2019. Aluminum and Wrought Aluminum Alloys. Brands (IPK Izd-vo Standartov, Moscow, 2019).

  39. ASM HANDBOOK. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (The Materials Information Company, 2010), Vol. 2.

  40. A. Lotfy, A. V. Pozdniakov, V. S. Zolotorevskiy, E. Mohamed, M. T. Abou El-Khair, A. Daoud, and F. Fairouz, “Microstructure, compression and creep properties of Al–5% Cu–0.8Mn/5% B4C composites,” Mater. Res. Exp. 6, 095530 (2019).

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 19-79-10242). S.M. Amer is funded by a partial scholarship from the Ministry of Higher Education of the Arab Republic of Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pozdniakov.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amer, S.M., Barkov, R.Y., Prosviryakov, A.S. et al. Structure and Properties of New Heat-Resistant Cast Alloys Based on the Al–Cu–Y and Al–Cu–Er Systems. Phys. Metals Metallogr. 122, 908–914 (2021). https://doi.org/10.1134/S0031918X21090027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21090027

Keywords:

Navigation