Skip to main content

Advertisement

Log in

Investigation of the Effect of Sub-rapid Solidification Processes on the Microstructure and Mechanical Properties of Al86Cu6Co2Y6 (at.%) Alloy

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of cooling rate on the microstructure and mechanical properties of the Al86Cu6Co2Y6 (at.%) alloy is studied in copper mold casting and melt spinning processes. The micro-hardness values of the copper-mold rods (248.4 ± 10.7 HV) are more than 3 times that of the conventional casting. Moreover, yield strength at room temperature has increased significantly by 67% (301 ± 13 MPa). The plastic strain increased from 4 to 7% during copper mold casting due to the microstructure refinement, extended solid solubility of elements, homogeneously distributed of the fine eutectic and intermetallic phases (Al3Y, AlCu, AlCu3, Al3Y5) along with the matrix. However, a further increase in the cooling rate up to about 6.9 × 106 Ks−1 obtained by the Lin and Johnson method during melt spinning can even inhibit the crystallization process. The amorphous ribbons exhibit a remarkable micro-hardness and tensile strength of 265.5 ± 12.6 HV and 701 ± 19 MPa, respectively. Non-crystalline structure with a lack of dislocations and grain boundaries results in such a high level of strength.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Jin, A. Wang, K. Wang, W. Li, B. Wan, and T. Zhai, Significant Strengthening Effect in Ultra-Fine Grained Al Alloy Made by Fast Solidification and Hot Extrusion Processes, J. Mater. Res. Technol., 2022, 16, p 1761–1769.

    Article  CAS  Google Scholar 

  2. S. Liu, X. Wang, Q. Zu, B. Han, X. Han, and C. Cui, Significantly Improved Particle Strengthening of Al-Sc Alloy by High Sc Composition Design and Rapid Solidification, Mater. Sci. Eng. A, 2021, 800, p 140304.

    Article  CAS  Google Scholar 

  3. M.T. P´erez-Prado, A. Martin, D.F. Shi, S. Milenkovic, and C.M. Cepeda-Jim´enez, An Al-5Fe-6Cr Alloy with Outstanding High Temperature Mechanical Behavior by Laser Powder Bed Fusion, Addit. Manuf., 2022, 55, p 102828.

    Google Scholar 

  4. H.R. Ammar, M. Baig, A.H. Seikh, and J.A. Mohammed, Effect of Alloying Elements on Thermal Stability of Nanocrystalline Al Alloys, Trans. Nonferrous Met. Soc. China, 2021, 31, p 11–23.

    Article  CAS  Google Scholar 

  5. T. Kozieł, K. Pajor, and Ł. Gondek, Cooling Rate Evaluation during Solidification in the Suction Casting Process, J. Mater. Res. Technol., 2020, 9(6), p 13502–13508.

    Article  Google Scholar 

  6. H. Teng, X. Zhang, Z. Zhang, T. Li, and S. Cockcroft, Research on Microstructures of Sub-rapidly Solidified AZ61 Magnesium Alloy, Mater Charact, 2009, 60, p 482–486.

    Article  CAS  Google Scholar 

  7. K. Saksl, D. Vojtech, and J. Durisin, In situ XRD Studies on Al-Ni and Al-Ni-Sr Alloys, J. Alloys Compd., 2008, 464, p 95–100.

    Article  CAS  Google Scholar 

  8. Y. Liu, M. Gao, S. Meng, Y. Fu, W. Li, C. Li, and R. Guan, Solidification Behavior and Enhanced Properties of Semi-Solid Ale8Sie0.5Fe Alloys Fabricated by Rheo-diecasting, J. Mater. Res. Technol., 2022, 19, p 3160–3171.

    Article  CAS  Google Scholar 

  9. A.G. Odeshi, A.A. Tiamiyu, D. Das, N. Katwal, I.N.A. Oguocha, and A.K. Khan, High Strain-Rate Deformation of T8-tempered, Cryo-rolled and Ultrafine Grained AA 2099 Aluminum Alloy, Mater. Sci. Eng. A, 2019, 754, p 602–612.

    Article  CAS  Google Scholar 

  10. Y.H. Kim, K. Hiraga, A. Inoue, T. Masumoto, and H.H. Jo, Crystallization and High Mechanical Strength of Al-based Amorphous Alloys, Mater. Trans. JIM, 1994, 35, p 293–302.

    Article  CAS  Google Scholar 

  11. E. Pershina, D. Matveev, G. Abrosimova, and A. Aronin, Formation of Nanocrystals in an Amorphous Al90Y10 Alloy, Mater Charact, 2017, 133, p 87–93.

    Article  CAS  Google Scholar 

  12. F.G. Cuevas, S. Lozano-Perez, R.M. Aranda, and E.S. Caballero, Crystallization of Amorphous Al-Sm-Ni-(Cu) Alloys, Intermetallics, 2008, 112, p 106537.

    Article  Google Scholar 

  13. B. Rusanov, V. Sidorov, P. Svec, P. Svec Sr., D. Janickovic, A. Moroz, L. Son, and O. Ushakova, Electric Properties and Crystallization Behavior of Al-TM-REM Amorphous Alloys, J. Alloys Compd., 2019, 787, p 448–451.

    Article  CAS  Google Scholar 

  14. A. Sahu, R.S. Maurya, and T. Laha, Non-isothermal Crystallization Behavior of Al86Ni8Y6 and Al86Ni6Y4.5Co2La15 Melt-Spun Ribbons, Milled Ribbon Particles and Bulk Samples Consolidated by Spark Plasma Sintering, Thermochim. Acta, 2020, 684, p 178486.

    Article  CAS  Google Scholar 

  15. M. Kubota, P. Cizek, and W.M. Rainforth, Properties of Mechanically Milled and Spark Plasma Sintered Al-15 at.% MgB2 Composite Materials, Compos. Sci. Technol., 2008, 68, p 888–895.

    Article  CAS  Google Scholar 

  16. Y. Shen and J.H. Perepezko, Al-based Amorphous Alloys: Glass-Forming Ability, Crystallization Behavior and Effects of Minor Alloying Additions, J. Alloys Compd., 2017, 707, p 3–11.

    Article  CAS  Google Scholar 

  17. J.I. Hyun, C.I. Kim, S.W. Nam, W.T. Kim, and D.H. Kim, Nanoscale Phase Separation and Microstructure Evolution during Crystallization in Al-Si-Ni Amorphous Alloy, Mater. Des., 2020, 192, p 108719.

    Article  CAS  Google Scholar 

  18. K.G. Prashanth, S. Scudino, B.S. Murty, and J. Eckert, Crystallization Kinetics and Consolidation of Mechanically Alloyed Al70Y16Ni10Co4 Glassy Powders, J. Alloys Compd., 2009, 477, p 171–177.

    Article  CAS  Google Scholar 

  19. Z.H. Huang, J.F. Li, Q.L. Rao, and Y.H. Zhou, Effects of La Content on the Glass Transition and Crystallization Process of Al-Ni-La Amorphous Alloys, Intermetallics, 2007, 15, p 1139–1146.

    Article  CAS  Google Scholar 

  20. S. Scudino, K.B. Surreddi, S. Sager, M. Sakaliyska, J.S. Kim, W. Löser, and J. Eckert, Production and Mechanical Properties of Metallic Glass-Reinforced Al-based Metal Matrix Composites, J. Mater. Sci., 2008, 43, p 4518–4526.

    Article  CAS  Google Scholar 

  21. S.F. Chen, C.Y. Chen, and C.H. Lin, Insight on the Glass-Forming Ability of Al-Y-Ni-Ce bulk Metallic Glass, J. Alloys Compd., 2015, 637, p 418–425.

    Article  CAS  Google Scholar 

  22. Z. Wang, S. Scudino, J. Eckert, and K.G. Prashanth, Selective Laser Melting of Nanostructured Al-Y-Ni-Co Alloy, Manuf. Lett., 2020, 25, p 21–25.

    Article  Google Scholar 

  23. X. Shi, C. Wang, Z.T. Liu, X. Liu, J. Jiang, Z.M. Hua, Y.T. Mo, N. Jiang, M. Zha, and H.Y. Wang, Revealing the Underlying Mechanism of Abnormal Grain Growth in Sub-rapid Solidified Al-Mg-Si-Fe Alloy, Mater Charact, 2021, 174, p 110987.

    Article  CAS  Google Scholar 

  24. S.Y. Zhang, X. Wang, X. Liu, Y.T. Mo, C. Wang, T. Cheng, O. Ivasishin, and H.Y. Wang, High Strength-Ductility Synergy Induced by Sub-rapid Solidification in Twin-Roll Cast Al-Mg-Si Alloys, J. Mater. Res. Technol., 2022, 16, p 922–933.

    Article  CAS  Google Scholar 

  25. Z. Gong, J. Wang, Y. Sun, S. Zhu, L. Wang, and S. Guan, Microstructure and Mechanical Properties of the Sub-rapidly Solidified Mg-Zn-Y-Nd Alloy Prepared by Step-Copper Mold Casting, Mater. Today Commun., 2021, 27, p 102308.

    Article  CAS  Google Scholar 

  26. Z.T. Liu, C. Wang, Q. Luo, J. You, X.L. Zhou, J. Xu, Y.T. Mo, J.W. Song, M. Zha, and H.Y. Wang, Effects of Mg Contents on the Microstructure Evolution and Fe-bearing phase selection of Al-Mg-Si-Fe Alloys under Sub-rapid Solidification, Materialia, 2020, 13, p 100850.

    Article  CAS  Google Scholar 

  27. Y. Qu, K. Yang, Y. Zhou, Y. Mao, W. Zhang, and S. Xu, Phase Selection in Sub-rapidly Solidified Au-20Sn Alloys, Mater. Sci. Forum, 2015, 817, p 325–330.

    Article  Google Scholar 

  28. S. Scudino, M. Sakaliyska, K.B. Surreddi, F. Ali, and J. Eckert, Structure and Mechanical Properties of Al-Mg Alloys Produced by Copper Mold Casting, J. Alloys Compd., 2010, 504S, p S483–S486.

    Article  Google Scholar 

  29. T. Kozieł, Estimation of Cooling Rates in Suction Casting and Copper-Mold Casting Process, Arch. Metall. Mater., 2015, 60, p 2.

    Article  Google Scholar 

  30. W.J. Botta, C. Triveno Rios, R.D. Sa Lisboa, A.R. de Andrade, M.F. de Oliveira, C. Bolfarini, and C.S. Kiminami, Crystallization Behaviors of Al-based Metallic Glasses: Compositional and Topological Aspects, J. Alloys Compd., 2009, 483, p 89–93.

    Article  CAS  Google Scholar 

  31. A.P. Kumar, V.M.S. Muthaiah, and S. Mula, Effect of Nb, Y and Zr on Thermal Stability of Nanocrystalline Al-45 wt.% Cu Alloy Prepared by Mechanical Alloying, J. Alloys Compd., 2017, 722, p 617–627.

    Article  CAS  Google Scholar 

  32. Y. Li, T. Jiang, B. Wei, B. Xu, G. Xu, and Z. Wang, Microcharacterization and Mechanical Performance of an Al-50Si Alloy Prepared Using the Sub-rapid Solidification Technique, Mater. Lett., 2020, 263, p 127287.

    Article  CAS  Google Scholar 

  33. N. Unlu, A. Genc, and M.L. Ovecoglu, Characterization Investigation Meltspun Ternary AlxSi3.3Fe (x = 10, 20 wt.%) Alloys, J. Alloys Compd., 2001, 322, p 249–256.

    Article  CAS  Google Scholar 

  34. S. Guo and Y. Liu, Estimation of Critical Cooling Rates for Formation of Amorphous Alloys from Critical Sizes, J. Noncryst. Solids, 2012, 358, p 2753–2758.

    Article  CAS  Google Scholar 

  35. J.P. Liao, B.J. Yang, Y. Zhang, W.Y. Lu, X.J. Gu, and J.Q. Wang, Evaluation of Glass Formation and Critical Casting Diameter in Al-based Metallic Glasses, Mater. Des., 2015, 88, p 222–226.

    Article  CAS  Google Scholar 

  36. C.T. Rios, S. Suriñach, M.D. Baró, C. Bolfarini, W.J. Botta, and C.S. Kiminami, Glass Forming Ability of the Al-Ce-Ni System, J. Noncryst. Solids, 2008, 354, p 4874–4877.

    Article  Google Scholar 

  37. A. Inoue, Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys, Acta Mater., 2000, 48, p 279–306.

    Article  CAS  Google Scholar 

  38. P.J. Squire and I.T.H. Chang, Development of Rapidly Solidified Al-Y-Ni-Based Alloys, Mater. Sci. Eng. A, 2007, 449–451, p 1009–1012.

    Article  Google Scholar 

  39. M. Salehi and S.G. Shabestari, Nanostructure Evolution, Thermal Stability and Hardness of Amorphous Al-Cu-Y (Co, La) (at.%) Alloys, J. Noncryst. Solids, 2022, 589, p 121663.

    Article  CAS  Google Scholar 

  40. S.V. Kontomaris and A. Malamou, Hertz Model or Oliver & Pharr Analysis? Tutorial Regarding AFM Nanoindentation Experiments on Biological Samples, Mater. Res. Express, 2020, 7, p 033001.

    Article  CAS  Google Scholar 

  41. W.H. Jiang, F.E. Pinkerton, and M. Atzmon, Mechanical Behavior of Shear Bands and the Effect of Their Relaxation in a Rolled Amorphous Al-based Alloy, Acta Mater., 2005, 53, p 3469–3477.

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Salehi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest with regard to the submitted manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabestari, M.G., Salehi, M. Investigation of the Effect of Sub-rapid Solidification Processes on the Microstructure and Mechanical Properties of Al86Cu6Co2Y6 (at.%) Alloy. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-09051-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-09051-5

Keywords

Navigation