Skip to main content
Log in

Free-standing microscale structures of nanocrystalline zirconia with biologically replicable three-dimensional shapes

  • Rapid Communication
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Microscale zirconia structures with intricate three-dimensional (3D) shapes and nanoscale features were synthesized using diatom (single-celled algae) microshells as transient scaffolds. After exposure to a zirconium alkoxide-bearing solution and firing at 550–850 °C, silica-based diatom microshells were coated with a thin, continuous nanocrystalline zirconia layer. Predominantly tetragonal or monoclinic zirconia could be produced with appropriate heat treatments. Selective silica dissolution then yielded freestanding zirconia micro-assemblies that retained the microshell shape and fine features. Such hybrid (biological/synthetic chemical) processing may be used to mass-produce nanostructured micro-assemblies with a variety of 3D, biologically replicable shapes and tailored compositions for use in numerous applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Birkby and R. Stevens: Applications of zirconia ceramics, Key Eng. Mater. 122, 527 (1996).

    Article  Google Scholar 

  2. B. Li and R.D. Gonzalez: Sol-gel synthesis and catalytic properties of sulfated zirconia catalysts, Ind. Eng. Chem. Res. 35, 3141 (1996).

    Article  CAS  Google Scholar 

  3. A.V. Shevchenko, E.V. Dudnik, A.K. Ruban, V.P. Red’ko, V.M. Vereschaka, and L.M. Lopato: Nanocrystalline powders based on ZrO2 for biomedical applications and power engineering, Powder Metall. Met. Ceram. 41, 558 (2002).

    Article  CAS  Google Scholar 

  4. O. Vasylkiv, Y. Sakka, and V.V. Skorokhod: Low-temperature processing and mechanical properties of zirconia and zirconia-alumina nanoceramics, J. Am. Ceram. Soc. 86, 299 (2003).

    Article  CAS  Google Scholar 

  5. M. Boaro, A. Trovarelli, H.-J. Hwang, and T.O. Mason: Electrical and oxygen storage/release properties of nano-crystalline ceria-zirconia solid solutions, Solid State Ionics 147, 85 (2002).

    Article  CAS  Google Scholar 

  6. G. Soyez, J.A. Eastman, L.J. Thompson, R.-G. Bai, P.M. Baldo, A.W. McCormick, R.J. DiMelfi, A.A. Elmustafa, M.F. Tambwe, and D.S. Stone: Grain-size-dependent thermal conductivity of nanocrystalline yttria-stabilized zirconia films grown by metal-organic chemical vapor deposition, Appl. Phys. Lett. 77, 1155 (2000).

    Article  CAS  Google Scholar 

  7. J.J. Storhoff, R.C. Mucic, and C.A. Mirkin: Strategies for organizing nanoparticles into aggregate structures and functional materials, J. Cluster Sci. 8, 179 (1997).

    Article  CAS  Google Scholar 

  8. E. Rabani, D.R. Reichman, P.L. Geissler, and L.E. Brus: Drying-mediated self-assembly of nanoparticles, Nature 426, 271 (2003).

    Article  CAS  Google Scholar 

  9. H.A. Lowenstam and S. Weiner: Mineralization by organisms and the evolution of biomineralization, in Biomineralization and Biological Metal Accumulation, edited by P. Westbroek, and de E.W. Jong (D. Reidel Publishing Co., Dordrecht, Holland, 1983), p. 191.

    Chapter  Google Scholar 

  10. F.E. Round, R.M. Crawford, and D.G. Mann: The Diatoms: Biology & Morphology of the Genera (Cambridge University Press, Cambridge, U.K., 1990).

    Google Scholar 

  11. S.A. Crawford, M.J. Higgins, P. Mulvaney, and R. Wetherbee: Nanostructure of the diatom frustule as revealed by atomic force and electron microscopy, J. Phycol. 37, 543 (2001).

    Article  Google Scholar 

  12. T. Lebeau and M.-J. Robert: Diatom cultivation and biotechnologically relevant products. Part I: Cultivation at various scales, Appl. Microbiol. Biotechnol. 60, 612 (2003).

    Article  CAS  Google Scholar 

  13. J. Parkinson and R. Gordon: Beyond micromachining: The potential of diatoms, Trends Biotechnol. 17, 190 (1999).

    Article  CAS  Google Scholar 

  14. C.W. Mehard, C.W. Sullivan, F. Azam, and B.E. Volcani: Role of silicon in diatom metabolism. IV. Subcellular localization of silicon and germanium in Nitzschia alba and Cylindrotheca fusiformis, Physiol. Plant. 30, 265 (1974).

    Article  CAS  Google Scholar 

  15. K.H. Sandhage, M.B. Dickerson, P.M. Huseman, M.A. Caranna, J.D. Clifton, T.A. Bull, T.J. Heibel, W.R. Overton, and M.E.A. Schoenwaelder: Novel, bioclastic route to self-assembled, 3D, chemically tailored meso/nanostructures: shape-preserving reactive conversion of biosilica (diatom) microshells, Adv. Mater. 14, 429 (2002).

    Article  CAS  Google Scholar 

  16. R.R. Unocic, F.M. Zalar, P.M. Sarosi, Y. Cai, and K.H. Sandhage: Anatase assemblies from algae: Coupling biological self-assembly of 3-D nanoparticle structures with synthetic reaction chemistry, Chem. Comm. 7, 795 (2004).

    Google Scholar 

  17. M.W. Anderson, S.M. Holmes, N. Hanif, and C.S. Cundy: Hierarchical pore structures through diatom zeolitization, Angew. Chem. Int. Ed. Engl. 39, 2707 (2000).

    Article  CAS  Google Scholar 

  18. C.S. Gaddis and K.H. Sandhage: Freestanding microscale 3-D polymeric structures with biologically-derived shapes and nanoscale features, J. Mater. Res. 19, 2541 (2004).

    Article  CAS  Google Scholar 

  19. J.A. Wang, M.A. Valenzuela, J. Salmones, A. Vazquez, A. Garcia-Ruiz, and X. Bokhimi: Comparative study of nanocrystalline zirconia prepared by precipitation and sol-gel methods, Catal. Today 68, 21 (2001).

    Article  CAS  Google Scholar 

  20. H. Li, K. Liang, S. Gu, and G. Xiao: Oriented nanostructured ZrO2 thin films on fused quartz substrate by sol-gel process, J. Mater. Sci. Lett. 20, 1301 (2001).

    Article  CAS  Google Scholar 

  21. B.D. Cullity: Elements of X-ray Diffraction (Addison-Wesley Publishing Co., Reading, MA, 1978), p. 101.

    Google Scholar 

  22. Y. Kanno: Thermodynamic and crystallographic discussion of the formation and dissociation of zircon, J. Mater. Sci. 24, 2415 (1989).

    Article  CAS  Google Scholar 

  23. T. Itoh: Zircon ceramics prepared from hydrous zirconia and amorphous silica, J. Mater. Sci. Lett. 13, 1661 (1994).

    Article  CAS  Google Scholar 

  24. T.G. Dunahay, E.E. Jarvis, and P.G. Roessler: Genetic transformation of the diatoms Cyclotella Cryptica and Navicula Saprophila, J. Phycol. 31, 1004 (1995).

    Article  CAS  Google Scholar 

  25. L.A. Zaslavskaia, J.C. Lippmeier, P.G. Kroth, A.R. Grossman, and K.E. Apt: Transformation of the diatom Phaeodactylum Tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes, J. Phycol. 36, 379 (2000).

    Article  CAS  Google Scholar 

  26. Web site of the Joint Genome Institute: U.S. Department of Energy: http://genome.jgi-psf.org/thaps1/thaps1.home.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth H. Sandhage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Gaddis, C.S., Cai, Y. et al. Free-standing microscale structures of nanocrystalline zirconia with biologically replicable three-dimensional shapes. Journal of Materials Research 20, 282–287 (2005). https://doi.org/10.1557/JMR.2005.0046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0046

Navigation