Skip to main content
Log in

Influence of sulfur incorporation on field-emission properties of microcrystalline diamond thin films

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Results are reported on the electron field emission properties of microcrystalline diamond thin films grown on molybdenum substrates by the sulfur (S)-assisted hot-filament chemical vapor deposition technique using methane (CH4), hydrogen sulfide (H2S), and hydrogen (H2) gas mixtures. Electron field-emission measurements revealed that the S-incorporated microcrystalline diamond thin films have substantially lower turn-on fields and steep rising currents as compared to those grown without sulfur. The field-emission properties for the S-incorporated films were also investigated systematically as a function of substrate temperature (TS). Lowest turn-on field achieved was observed at around 12.5 V/μm for the samples grown at TS of 700°C with 500 ppm H2S. To establish the property-structure correlation, we analyzed the films with multiple characterizations include scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy (RS), and x-ray photoelectron spectroscopy (XPS) techniques. It was found that sulfur addition causes significant microstructural changes in microcrystalline diamond thin films. S-assisted films show smoother, coarse-grained surfaces (non-faceted) than those grown without it (well-faceted) and a relatively higher content of non-diamond carbon (primarily sp2-bonded C). RS and investigations on the morphology by SEM and AFM indicated the increase of sp2 C content with increasing TS followed by a morphological transition at 700°C in the films. XPS investigations also showed the incorporation of S in the films up to a few atomic layers. It is believed that the electron-emission properties are governed by the sulfur incorporation during the chemical vapor deposition process. Although most of the S is expected to be electrically inactive, under the high doping conditions hereby used, it is shown rather indirectly through multiple characterizations that there may be some amount of S in donor states. Therefore the results are discussed in terms of the dual role of S whereby it induces the structural defects in the form of enhanced sp2 C content at the expense of diamond quality and a possibility of availability of conduction electrons. In fact the latter finding is supported through room temperature electrical conductivity measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. Castellano, Handbook of Display Technology (Academic, New York, 1992); J.E. Jaskie, Mater. Res. Bull. 21, 59 (1996); M.P. Silverman, Il Nuovo Cimento 97 B, 200 (1987).

  2. M.N. Yoder, in Synthetic Diamond: Emerging CVD Science and Technology, edited by K.E. Spear and J.P. Dismukes (John Wiley and Sons, New York, 1994).

  3. J.E. Field, in The Properties of Diamonds (Academic, London, U.K., 1979).

  4. S. Gupta, R.S. Katiyar, D.R. Gilbert, R.K. Singh, and G. Morell, J. Appl. Phys. 88, 5695 (2000).

    Article  CAS  Google Scholar 

  5. M.J. Ulczynski, D.K. Reinhard, M. Prytajko, and J. Amusen, in Advances in New Diamond Science and Technology, Proceedings of the 4th International Conference on New Diamond Science and Technology, Kobe, Japan, 1994, edited by S. Kaito, N. Fujimori, O. Fukunaga, M. Kamo, K. Kobashi, and M. Yihikawa (MYU, Tokyo, Japan, 1994), p. 41.

  6. T.H. Huang, C.T. Kuo, T.S. Lin, and C.S. Chang, in Diamond and Related Materials, edited by P.K. Bachmann, A.T. Collins, and M. Seal (Elsevier, Lausanne, Switzerland, 1993), Vol. 2, p. 928.

  7. C. Wang, A. Garcia, D.C. Ingram, M. Lake, and M.E. Kordesch, Electron. Lett. 27, 1459 (1991).

    Article  CAS  Google Scholar 

  8. V.V. Zhirnov and J.J. Hren, MRS Bull. 23 (9), 42 (1998).

    Article  CAS  Google Scholar 

  9. I. Brodie and C.A. Spindt, Adv. Electron. Electron. Phys. 83, 1106 (1992).

    Google Scholar 

  10. O. Gröning, L-O. Nilsson, P. Gröning, and L. Schlapbach, Solid-State Electron. 45, 929 (2001); O.M. Küttel, O. Gröning, C. Emmennegger, L. Nilsson, E. Maillard, L. Diederich, and L. Schlapbach, Carbon 37, 745 (1999).

    Article  Google Scholar 

  11. J. Robertson, in Materials Issues in Vacuum Microelectronics, edited by W. Zhu, L.S. Pan, T.E. Felter, and C. Holland (Mater. Res. Soc. Symp. Proc. 509, Warrendale, PA, 1998), p. 83.

  12. R.G. Forbes, Solid-State Electron. 45, 779 (2001).

    Article  CAS  Google Scholar 

  13. W. Zhu, C. Bower, G.P. Kochanski, and S. Jin, Solid-State Electron. 45, 921 (2001).

    Article  CAS  Google Scholar 

  14. F.J. Himpsel, J.A. Knapp, J.A. van Vechten, and D.E. Eastman, Phys. Rev. B 20, 624 (1979).

    Article  CAS  Google Scholar 

  15. J. Van der Weide and R.J. Nemanich, Appl. Phys. Lett. 62, 1878 (1993).

    Article  Google Scholar 

  16. P.A. Alivisatos, Science 271, 933 (1996).

    Article  CAS  Google Scholar 

  17. J.C. Angus, P. Koidl, S. Domitz, in Plasma Deposited Thin Films, edited by J. Mort and F. Jansen (CRC Press, Boca Raton, FL, 1986), p. 89.

  18. M.N. Yoder, in Synthetic Diamond: Emerging CVD Science and Technology, edited by K.E. Spear and J.P. Dismukes (John Wiley and Sons, New York, 1994), p. 4.

  19. Y. Lifshitz, Diamond Relat. Mater. 8, 1659 (1999).

    Article  CAS  Google Scholar 

  20. K. Okano, S. Koizumi, S. Ravi P. Silva, and G.A.J. Amaratunga, Nature 381, 140 (1996).

    Article  CAS  Google Scholar 

  21. S. Gupta, B.R. Weiner, and G. Morell, Diamond Relat. Mater. 11, 799 (2002).

    Article  CAS  Google Scholar 

  22. M. Park, A.T. Sowers, C.L. Rinne, R. Schlesser, L. Bergman, R. Nemanich, V.V. Zhirnov, and W.B. Choi, J. Vac. Sci. Technol. B 17, 734 (1999), and references therein.

    Article  CAS  Google Scholar 

  23. C. Kimura, S. Koizumi, M. Kamo, and T. Sugino, J. Vac. Sci. Technol. B 18, 1024 (2000).

    Article  CAS  Google Scholar 

  24. F.A.M. Köck, J.M. Garguilo, B. Brown, and R.J. Nemanich, Diam. Relat. Mater. 11, 774 (2002).

    Article  Google Scholar 

  25. I. Sakaguchi, M.N. Gamo, Y. Kikuchi, E. Yasu, H. Haneda, T. Suzuki, and T. Ando, Phys. Rev. B 60, R2139 (1999); R. Kalish, A. Reznik, C. Uzan-Saguy, and C. Cytermann, Appl. Phys. Lett. 76, 757 (2000).

    Article  CAS  Google Scholar 

  26. D. Saada, J. Adler, and R. Kalish, Appl. Phys. Lett. 77, 878 (2000); T. Miyazaki and H. Okushi, Diamond Relat. Mater. 10, 449 (2001).

    Article  CAS  Google Scholar 

  27. O. Gröning, O.M. Küttel, E. Schallar, P. Gröning, and L. Schlapbach, Appl. Phys. Lett. 69, 476 (1996).

    Article  Google Scholar 

  28. N.S. Xu, in High Voltage Vacuum Insulation, edited by R.V. Latham (Academic, New York, 1995), Chapter 4.

  29. V.V. Zhirnov, W.B. Choi, J.J. Cuomo, and J.J. Hren, Appl. Surf. Sci. 94/95, 123 (1996).

    Article  Google Scholar 

  30. N.S. Xu, Y. Tzeng, and R.V. Latham, J. Phys. D 26, 1776 (1993).

    Article  CAS  Google Scholar 

  31. J.D. Shovlin and M.E. Kordesch, Appl. Phys. Lett. 65, 863 (1994).

    Article  CAS  Google Scholar 

  32. W. Zhu, G.P. Kochanski, S. Jin, L. Seibles, D.C. Jacobson, M. McCormack, and A.E. White, Appl. Phys. Lett. 67, 1157 (1995); W. Zhu, G.P. Kochanski, S. Jin, and L. Seibles, J. Vac. Sci. Technol. B 14, 2011 (1996); W. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin, Appl. Phys. Lett. 75, 873 (1999); N.M. Miskovsky, P.H. Cutler, and Z-H. Huang, J. Vac. Sci. Technol. B 14, 2037 (1996).

    Article  CAS  Google Scholar 

  33. H. Sternsculte, M. Schreck, and B. Stritzker, Diam. and Related Materials 12, 318 (2003).

    Article  Google Scholar 

  34. E. Gheeraert, N. Casanova, A. Tajani, A. Deneuville, E. Bustarret, J.A. Garrido, C.E. Nebel, and M. Stutzmann, Diamond Relat. Mater. 11, 289 (2001); H. Sternschulte, M. Schreck, and B. Stritzker, Diamond Relat. Mater. 11, 296 (2001); J.R. Petherbridge, P.W. May, G. Fuge, K.N. Rosser, and M.N. R. Ashfold, Diamond Relat. Mater. 11, 301 (2001).

    Article  Google Scholar 

  35. S. Gupta, B.R. Weiner, and G. Morell, J. Mater. Res. 18, 363 (2002).

    Article  Google Scholar 

  36. W. Haynes and R. Loudon, in Scattering of Light by Crystals (Wiley Interscience, New York, 1978).

  37. O. Gröning, O.M. Küttel, P. Gröning, and L. Schlapbach, J. Vac. Sci. Technol. B 17, 1970 (1999).

    Article  Google Scholar 

  38. S. Prawer, K.W. Nugent, D.N. Jamieson, J.O. Orwa, L.A. Bursill, and J.L. Peng, Chem. Phys. Lett. 332, 93 (2000).

    Article  CAS  Google Scholar 

  39. R.J. Nemanich, J.T. Glass, G. Luckovsky, and R.E. Shröder, J. Vac. Sci. Technol. A 6, 1783 (1988), and references therein.

    Article  CAS  Google Scholar 

  40. S. Gupta, B.L. Weiss, B.R. Weiner, and G. Morell, Appl. Phys. Lett. 80, 1471 (2002).

    Article  CAS  Google Scholar 

  41. L. Bergman and R.J. Nemanich, J. Appl. Phys. 78, 6709 (1995); S. Gupta, R.S. Katiyar, D.R. Gilbert, R.K. Singh, and G. Morell, J. Appl. Phys. 88, 5695 (2000).

    Article  CAS  Google Scholar 

  42. Handbook of X-ray Photoelectron Spectroscopy, edited by J. Chastain (Perkin-Elmer Corp., Chanhassen, MN, 1992).

  43. D.G. Castner, K. Hinds, and D.W. Grainger, Langmuir 12, 5083 (1996).

    Article  CAS  Google Scholar 

  44. F.A.M. Köck, J.M. Garguilo, R.J. Nemanich, S. Gupta, B.R. Weiner, and G. Morell, Diamond Relat. Mater. 12, 474 (2003).

    Article  Google Scholar 

  45. S. Gupta, B.R. Weiner, and G. Morell, Appl. Phys. Lett. 83, 491 (2003).

    Article  CAS  Google Scholar 

  46. F. Cleri, P. Keblinski, L. Colombo, D. Wolf, and S.R. Phillpot, Europhys. Lett. 46, 671 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S., Weiner, B.R. & Morell, G. Influence of sulfur incorporation on field-emission properties of microcrystalline diamond thin films. Journal of Materials Research 18, 2708–2716 (2003). https://doi.org/10.1557/JMR.2003.0377

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0377

Navigation