Skip to main content
Log in

Growth and characterization of diamond particles, diamond films, and CNT-diamond composite films deposited simultaneously by hot filament CVD

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

It is important to understand the growth of CNT-diamond composite films in order to improve the inter-link between two carbon allotropes, and, in turn, their physical properties for field emission and other applications. Isolated diamond particles, continuous diamond thin films, and thin films of carbon nanotubes (CNTs) having non-uniformly distributed diamond particles (CNT-diamond composite films) were simultaneously grown on unseeded, seeded, and catalyst pre-treated substrates, respectively, using a large-area multi-wafer-scale hot filament chemical vapor deposition. Films were deposited for four different growth durations at a given deposition condition. The changes in surface morphology and growth behavior of diamond particles with growth duration were investigated ex situ using field emission scanning electron microscopy and 2D confocal Raman depth spectral imaging, respectively. A surface morphological transition from faceted microcrystalline nature to nanocrystalline nature was observed as a function of growth duration in the case of isolated diamond particles grown on both unseeded and catalyst pre-treated substrates. However, such a morphological transition was not observed on the simultaneously grown continuous diamond thin films on seeded substrates. 2D confocal Raman depth spectral imaging of diamond particles showed that the local growth of CNTs did not affect the growth behavior of neighboring diamond particles on catalyst pre-treated substrates. These observations emphasize the importance of surface chemical reactions at the growth site in deciding sp2 or sp3 carbon growth and the final grain size of the diamond films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Asmussen J, Reinhard DK (2002) In: Asmussen J, Reinhard DK (eds) Diamond Films Handbook. Taylor & Francis, New York, pp 1–16

    Chapter  Google Scholar 

  2. Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng 43(3):61–102. doi:10.1016/j.mser.2003.10.001

    Article  Google Scholar 

  3. Nessim GD (2010) Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition. Nanoscale 2(8):1306–1323. doi:10.1039/b9nr00427k

    Article  Google Scholar 

  4. May PW (2000) Diamond thin films: a 21st-century material. Phil Trans Math Phys Eng Sci 358(1766):473–495

    Article  Google Scholar 

  5. Chiu C-C, Yoshimura M, Ueda K (2008) Synthesis of carbon nanotubes by microwave plasma-enhanced hot filament chemical vapor deposition. Diam Relat Mater 17(4–5):611–614. doi:10.1016/j.diamond.2007.08.031

    Article  Google Scholar 

  6. Yang Q, Xiao C, Chen W, Hirose A (2004) Selective growth of diamond and carbon nanostructures by hot filament chemical vapor deposition. Diam Relat Mater 13(3):433–437. doi:10.1016/j.diamond.2003.11.076

    Article  Google Scholar 

  7. Takagi D, Kobayashi Y, Homma Y (2009) Carbon Nanotube Growth from Diamond. J Am Chem Soc 131(20):6922–6923. doi:10.1021/ja901295j

    Article  Google Scholar 

  8. Hou Y-Q, Zhuang D-M, Zhang G, Wu M-S, Liu J-J (2002) Preparation of diamond films by hot filament chemical vapor deposition and nucleation by carbon nanotubes. Appl Surf Sci 185(3–4):303–308. doi:10.1016/S0169-4332(01)00988-6

    Article  Google Scholar 

  9. Xiao X, Elam JW, Trasobares S, Auciello O, Carlisle JA (2005) Synthesis of a Self-Assembled Hybrid of Ultrananocrystalline Diamond and Carbon Nanotubes. Adv Mater 17(12):1496–1500. doi:10.1002/adma.200401581

    Article  Google Scholar 

  10. Terranova ML, Orlanducci S, Fiori A, Tamburri E, Sessa V, Rossi M, Barnard AS (2005) Controlled Evolution of Carbon Nanotubes Coated by Nanodiamond: the Realization of a New Class of Hybrid Nanomaterials. Chem Mater 17(12):3214–3220. doi:10.1021/cm0502018

    Article  Google Scholar 

  11. Shankar N, Glumac NG, Yu M-F, Vanka SP (2008) Growth of nanodiamond/carbon-nanotube composites with hot filament chemical vapor deposition. Diam Relat Mater 17(1):79–83. doi:10.1016/j.diamond.2007.10.031

    Article  Google Scholar 

  12. Fernandes AJS, Pinto M, Neto MA, Oliveira FJ, Silva RF, Costa FM (2009) Nano carbon hybrids from the simultaneous synthesis of CNT/NCD by MPCVD. Diam Relat Mater 18(2–3):160–163. doi:10.1016/j.diamond.2008.08.015

    Article  Google Scholar 

  13. Varshney D, Weiner BR, Morell G (2010) Growth and field emission study of a monolithic carbon nanotube/diamond composite. Carbon 48(12):3353–3358. doi:10.1016/j.carbon.2010.05.025

    Article  Google Scholar 

  14. Hébert C, Ruffinatto S, Eon D, Mermoux M, Gheeraert E, Omnès F, Mailley P (2013) A composite material made of carbon nanotubes partially embedded in a nanocrystalline diamond film. Carbon 52:408–417. doi:10.1016/j.carbon.2012.09.051

    Article  Google Scholar 

  15. Bühlmann S, Blank E, Haubner R, Lux B (1999) Characterization of ballas diamond depositions. Diam Relat Mater 8(2–5):194–201. doi:10.1016/S0925-9635(98)00258-1

    Article  Google Scholar 

  16. May PW, Smith JA, Mankelevich YA (2006) Deposition of NCD films using hot filament CVD and Ar/CH4/H2 gas mixtures. Diam Relat Mater 15(2–3):345–352. doi:10.1016/j.diamond.2005.06.044

    Article  Google Scholar 

  17. May PW, Mankelevich YA (2006) Experiment and modeling of the deposition of ultrananocrystalline diamond films using hot filament chemical vapor deposition and Ar/CH4/H2 gas mixtures: A generalized mechanism for ultrananocrystalline diamond growth. J Appl Phys. doi:10.1063/1.2214304

    Google Scholar 

  18. May PW, Harvey JN, Smith JA, Mankelevich YA (2006) Reevaluation of the mechanism for ultrananocrystalline diamond deposition from Ar/CH4/H2 gas mixtures. J Appl Phys. doi:10.1063/1.2195347

    Google Scholar 

  19. Chen LC, Kichambare PD, Chen KH, Wu J-J, Yang JR, Lin ST (2001) Growth of highly transparent nanocrystalline diamond films and a spectroscopic study of the growth. J Appl Phys 89(1):753–759. doi:10.1063/1.1327608

    Article  Google Scholar 

  20. Hung J-M, Lin L-H, Shih Y-H, Liu C-M, Cheng H-C, Ou K-L (2011) Research of microstructural characteristics on nanocrystalline diamond by microwave plasma CVD. Appl Surf Sci 257(13):5508–5512. doi:10.1016/j.apsusc.2010.12.134

    Article  Google Scholar 

  21. Liu YK, Tzeng Y, Liu C, Tso P, Lin IN (2004) Growth of microcrystalline and nanocrystalline diamond films by microwave plasmas in a gas mixture of 1% methane/5% hydrogen/94% argon. Diam Relat Mater 13(10):1859–1864. doi:10.1016/j.diamond.2004.05.006

    Article  Google Scholar 

  22. Rabeau JR, John P, Wilson JIB, Fan Y (2004) The role of C2 in nanocrystalline diamond growth. J Appl Phys 96(11):6724–6732

    Article  Google Scholar 

  23. Weng J, Xiong LW, Wang JH, Dai SY, Man WD, Liu F (2012) Investigation of depositing large area uniform diamond films in multi-mode MPCVD chamber. Diam Relat Mater 30:15–19. doi:10.1016/j.diamond.2012.09.007

    Article  Google Scholar 

  24. May PW, Mankelevich YA (2008) From Ultrananocrystalline Diamond to Single Crystal Diamond Growth in Hot Filament and Microwave Plasma-Enhanced CVD Reactors: a Unified Model for Growth Rates and Grain Sizes. J Phys Chem C 112(32):12432–12441. doi:10.1021/jp803735a

    Article  Google Scholar 

  25. Shaikjee A, Coville NJ (2012) The role of the hydrocarbon source on the growth of carbon materials. Carbon 50(10):3376–3398. doi:10.1016/j.carbon.2012.03.024

    Article  Google Scholar 

  26. Jourdain V, Bichara C (2013) Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition. Carbon 58:2–39. doi:10.1016/j.carbon.2013.02.046

    Article  Google Scholar 

  27. Zimmer J, Ravi KV (2006) Aspects of scaling CVD diamond reactors. Diam Relat Mater 15(2–3):229–233. doi:10.1016/j.diamond.2005.08.042

    Article  Google Scholar 

  28. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1–2):47–57. doi:10.1016/j.ssc.2007.03.052

    Article  Google Scholar 

  29. Rudigier M, Haubner R (2012) Characterisation of diamond coatings with different morphologies by Raman spectroscopy using various laser wavelengths. Anal Bioanal Chem 403(3):675–681. doi:10.1007/s00216-012-5808-y

    Article  Google Scholar 

  30. Ferrari A, Robertson J (2001) Origin of the 1150 cm−1 Raman mode in nanocrystalline diamond. Phys Rev B 63(12):121405

    Article  Google Scholar 

  31. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409(2):47–99. doi:10.1016/j.physrep.2004.10.006

    Article  Google Scholar 

  32. Mermoux M, Marcus B, Crisci A, Tajani A, Gheeraert E, Bustarret E (2005) Micro-Raman scattering from undoped and phosphorous-doped (111) homoepitaxial diamond films: stress imaging of cracks. J Appl Phys 97(4):043512–043530

    Article  Google Scholar 

  33. Crisci A, Baillet F, Mermoux M, Bogdan G, Nesládek M, Haenen K (2011) Residual strain around grown-in defects in CVD diamond single crystals: a 2D and 3D Raman imaging study. Phys Status Solidi (a) 208(9):2038–2044. doi:10.1002/pssa.201100039

    Article  Google Scholar 

  34. Kulisch W, Popov C, Rauscher H, Rinke M, Veres M (2011) Investigation of the initial growth of ultrananocrystalline diamond films by multiwavelength Raman spectroscopy. Diam Relat Mater 20(7):1076–1080. doi:10.1016/j.diamond.2011.03.042

    Article  Google Scholar 

  35. Herlinger J (2006) sp3’s experience using hot filament CVD reactors to grow diamond for an expanding set of applications. Thin Solid Films 501(1–2):65–69. doi:10.1016/j.tsf.2005.07.108

    Article  Google Scholar 

  36. Liang X, Wang L, Zhu H, Yang D (2007) Effect of pressure on nanocrystalline diamond films deposition by hot filament CVD technique from CH4/H2 gas mixture. Surf Coat Technol 202(2):261–267. doi:10.1016/j.surfcoat.2007.05.032

    Article  Google Scholar 

  37. Zhao X, Ando Y, Qin L-C, Kataura H, Maniwa Y, Saito R (2002) Multiple splitting of G-band modes from individual multiwalled carbon nanotubes. Appl Phys Lett 81(14):2550–2552. doi:10.1063/1.1502196

    Article  Google Scholar 

  38. Maschmann MR, Amama PB, Goyal A, Iqbal Z, Gat R, Fisher TS (2006) Parametric study of synthesis conditions in plasma-enhanced CVD of high-quality single-walled carbon nanotubes. Carbon 44(1):10–18. doi:10.1016/j.carbon.2005.07.027

    Article  Google Scholar 

  39. Rodriguez NM, Chambers A, Baker RTK (1995) Catalytic Engineering of Carbon Nanostructures. Langmuir 11(10):3862–3866. doi:10.1021/la00010a042

    Article  Google Scholar 

  40. Zeiler E, Schwarz S, Rosiwal SM, Singer RF (2002) Structural changes of tungsten heating filaments during CVD of diamond. Mater Sci Eng, A 335(1–2):236–245. doi:10.1016/S0921-5093(01)01933-5

    Article  Google Scholar 

  41. Comerford DW, D’Haenens-Johansson UFS, Smith JA, Ashfold MNR, Mankelevich YA (2008) Filament seasoning and its effect on the chemistry prevailing in hot filament activated gas mixtures used in diamond chemical vapour deposition. Thin Solid Films 516(5):521–525. doi:10.1016/j.tsf.2007.06.114

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Science and Technology (DST) of India for the financial support (Grant No SR/NM/NAT-02/2005) for the establishment of Nano Functional Materials Technology Centre (NFMTC) at IIT Madras. MKS wants to thank CSIR-SRF for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Ramachandra Rao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumaran, C.R., Chandran, M., Krishna Surendra, M. et al. Growth and characterization of diamond particles, diamond films, and CNT-diamond composite films deposited simultaneously by hot filament CVD. J Mater Sci 50, 144–156 (2015). https://doi.org/10.1007/s10853-014-8574-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8574-8

Keywords

Navigation