Skip to main content
Log in

Deposition of polycrystalline and nanocrystalline diamond on graphite: effects of surface pre-treatments

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The growth of hydrogenated sp3-phase of diamond on the sp2-phase of graphite by Microwave Plasma Enhanced Chemical Vapour Deposition (MPECVD) is a challenge, primarily because hydrogen etches graphite much faster than the growth rate of diamond. To enhance nucleation of diamond on graphite, we used a plethora of techniques such as plasma etching, ion bombardment, manual scratching, and scratching by ultrasonic agitation. Nanocrystalline and polycrystalline diamond thin-films were grown by MPECVD on the surface of pre-treated or pristine graphite using 1.5, 3.0, and 3.6 kW microwave power. Samples were characterised by Scanning Electron Microscopy, Raman Spectroscopy, and X-ray Photoelectron Spectroscopy. Species in the gas phase during film deposition were monitored by Optical Emission Spectroscopy. We have found that the surface area covered and the morphology of the diamond films are dependent on the surface pre-treatment. The crystallite size of the films depends on the microwave power used during MPECVD growth. The results of this study establish the protocols for diamond deposition by MPECVD on graphite substrates with a desired crystalline quality based on the pre-treatment of the substrate and the microwave power used during MPECVD. These results are important to modern applications, such as plasma facing materials, in which diamond has shown outstanding performance in contrast to that of graphite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. National Institute of Standards and Technology Atomic Spectra Database, http://physics.nist.gov/PhysRefData/ASD/index.html, (2016).

References

  1. S. Porro, G. De Temmerman, D.A. MacLaren, S. Lisgo, D.L. Rudakov, J. Westerhout, M. Wiora, P. John, I. Villalpando, J.I.B. Wilson, Diam. Relat. Mater. 19, 818 (2010)

    Article  ADS  Google Scholar 

  2. C.J. Tang, A.J. Neves, A.J.S. Fernandes, Diam. Relat. Mater. 12, 1488 (2003)

    Article  ADS  Google Scholar 

  3. D. Das, R. N. Singh, Int. Mater. Rev. 52, 29 (2007)

    Article  Google Scholar 

  4. Y.C. Chu, Y. Tzeng, O. Auciello. J. Appl. Phys. 115, 024308 (2014)

    Article  ADS  Google Scholar 

  5. C.J. Tang, A.J.S. Fernandes, A.V. Girao, S. Pereira, Fa-Nian Shi, M.R. Soares, F. Cossta, A.J. Neves, J.L. Pinto, J. Cryst. Growth 389, 83 (2014)

    Article  ADS  Google Scholar 

  6. R. Haubner, W. Kalss, Int. J. Met. Hard Mater 28, 475 (2010)

    Article  Google Scholar 

  7. S. Porro, G. De Temmerman, S. Lisgo, P. John, I. Villalpando, J.W. Zimmer, B. Johnson, J.I.B. Wilson, Diam. Relat. Mater. 18, 740 (2009)

    Article  ADS  Google Scholar 

  8. S. Porro, G. De Temmerman, P. John, S. Lisgo, I. Villalpando, J.I.B. Wilson, Phys. Status Solidi A 206, 2028 (2009)

    Article  ADS  Google Scholar 

  9. G. De Temmerman, R.P. Doerner, P. John, S. Lisgo, A. Litnovsky, L. Marot, S. Porro, P. Petersson, M. Rubel, D.L. Rudakov, G. Van Rooij, J. Westerhout, J.I.B. Wilson, Phys. Scr. T138, 014013 (2009)

    Article  ADS  Google Scholar 

  10. M. Volmer, A. Weber, Z. Phys. Chem. 119, 277 (1926)

    Google Scholar 

  11. C.C. Battaile, D.J. Srolovitz, I.I. Oleinik, D.G. Pettifor, A.P. Sutton, S.J. Harris, J.E. Butler, J. Chem. Phys. 11, 4291 (1999)

    Article  ADS  Google Scholar 

  12. W.R.L. Lambrecht, C.H. Lee, B. Segall, J.C. Angus, Z. Li, M. Sunkara, Nature 364, 607 (1993)

    Article  ADS  Google Scholar 

  13. S.P. Mehandru, A.B. Anderson, J.C. Angus, J. Phys. Chem. 96, 10978 (1992)

    Article  Google Scholar 

  14. Z. Li, L. Wang, T. Suzuki, A. Argoitia, P. Pirouz, J.C. Angus, J. Appl. Phys. 73, 711 (1993)

    Article  ADS  Google Scholar 

  15. L. Chow, H. Wang, S. Kleckley, A. Shulte, K. Casey, Solid State Commun. 93, 999 (1995)

    Article  ADS  Google Scholar 

  16. L.L. Regel, W.R. Wilcox, J. Mater, Sci. Lett. 19, 455 (2000)

    Article  Google Scholar 

  17. L. Cong, W. Jianhua, L. Sijia, X. Liwei, W. Jun, C. Xiaohui, Plasma Sci. Technol. 17, 496 (2015)

    Article  Google Scholar 

  18. J.G. Buijnsters, P. Shankar, W.J.P. van Enckevort, J.J. Schermer, J.J. ter Meulen, Phys. Status Solidi A 195, 383 (2003)

    Article  ADS  Google Scholar 

  19. S.P. Bozeman, B.R. Stoner, J.T. Glass, in Handbook of Industrial Diamonds and Diamonds Films, ed. by M.A. Prelas, G. Popovici, L.K. Bigelow (Marcel Dekker, New York, 1998), p. 901

    Google Scholar 

  20. T. Jiang, K. Xu, Carbon 33, 1663 (1995)

    Article  ADS  Google Scholar 

  21. P. John, N. Polwart, C.E. Troupe, J.I.B. Wilson, Diam. Relat. Mater. 11, 861 (2002)

    Article  ADS  Google Scholar 

  22. N. Polwart, PhD thesis, Heriot-Watt University, Edinburgh, UK, 2003

  23. J.R. Rabeau, P. John, J.I.B. Wilson, Y. Fan, J. Appl. Phys. 96, 6724 (2004)

    Article  ADS  Google Scholar 

  24. V. Podgursky, A. Bogatov, V. Sedov, I. Sildos, A. Mere, M. Viljus, J.G. Buijnsters, V. Ralchenko, Diam. Relat. Mater. 58, 172 (2015)

    Article  ADS  Google Scholar 

  25. J.J. Dubray, C.G. Pantano, W.A. Yarbrough, J. Appl. Phys. 72, 3136 (1992)

    Article  ADS  Google Scholar 

  26. R. Ramesham, R.F. Askew, M.F. Rose, B.H. Loo, J. Electrochem. Soc. 140, 3018 (1993)

    Article  Google Scholar 

  27. I. Villalpando, P. John, S. Porro and J.I.B. Wilson, Diam. Relat. Mater. 20, 711 (2011)

    Article  ADS  Google Scholar 

  28. M. Castro, R. Cuerno, M. Nicoli, L. Vazquez, J.G. Buijnsters, New J. Phys. 14, 103039 (2012)

    Article  ADS  Google Scholar 

  29. P. John, J.R. Rabeau, J.I.B. Wilson, Diam. Relat. Mater. 11, 608 (2002)

    Article  ADS  Google Scholar 

  30. A.C. Ferrari and J. Robertson, Phys. Rev. B 63, 121405 (2001)

    Article  ADS  Google Scholar 

  31. S. Reich, C. Thomsen, Phil. Trans. R. Soc. A 362, 2271 (2004)

    Article  ADS  Google Scholar 

  32. A. Hoffman, A. Fayer, A. Laikhtman, R. Brener, J. Appl. Phys. 77, 3126 (1995)

    Article  ADS  Google Scholar 

  33. A. Cook, A.G. Fitzgerald, A.G. Storey, J.I.B. Wilson, P. John, M.G. Jubber, D. Milne, I. Drummond, J.A. Savage, S. Haq, Diam. Relat. Mater. 1, 478 (1992)

    Article  ADS  Google Scholar 

  34. J.I.B. Wilson, J.S. Walton, G. Beamson, J. Electron Spectroscopy. Relat. Phenom. 121, 183 (2001)

    Article  Google Scholar 

  35. G. Beamson, D. Briggs, (Wiley, New York, 1992), p. 112

Download references

Acknowledgements

I.V. was supported by CONACYT and by the Programme Alβan, the European Union Programme of High Level Scholarships for Latin America, scholarship No. E05D056416MX. Funding from EPSRC (E/035868/1) is also gratefully acknowledged. Dr. Carlos Torres–Torres for his technical help in the writing of this article and M.C. Victor Valles-Gomez for proof reading the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Villalpando.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villalpando, I., John, P., Porro, S. et al. Deposition of polycrystalline and nanocrystalline diamond on graphite: effects of surface pre-treatments. Appl. Phys. A 123, 183 (2017). https://doi.org/10.1007/s00339-017-0819-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0819-3

Keywords

Navigation