Skip to main content
Log in

The effect of diamond film grain size on electron field emission performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Diamond films with different grain sizes in the range of ~ 9 nm to ~ 50 μm have been deposited on silicon substrates using a homemade microwave plasma chemical vapor deposition reactor by varying the deposition parameters. The surface morphologies have been examined by scanning electron microscope and atomic force microscope, which show the secondary nucleation intensity and surface defects of the diamond films increase with the decrease of the diamond grain size. Although X-ray diffraction spectra show the absence of graphitic carbon features, the Raman and X-ray photoelectron spectroscopy show the sp2/sp3-bonded carbon ratios increase with the decrease of the diamond grains. The CH4 percentage in plasma during deposition plays a crucial role in the formation of diamond films with different grain sizes and sp2 contents, which in turn determines the electron field emission behavior of the corresponding diamond films. The smaller the grain size of the diamond, the higher is the grain boundary density, which can provide more electron emission sites and form conductive networks for electron transport. The ultra-nanocrystalline diamond film shows needle-like cluster structures and optimum electrical performance. The corresponding electron field emission behavior can be turned on at a field of 6.71 V/μm and attain a current density of 16.28 μA/cm2 at an applied field of 11.31 V/μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. J. Kurian, K.J. Sankaran, I.N. Lin, Phys. Status Solidi 211, 2223 (2015). https://doi.org/10.1002/pssa.201431231

    Article  CAS  Google Scholar 

  2. W. Lei, Z. Zhu, C. Liu, X. Zhang, B. Wang, A. Nathan, Carbon 94, 687 (2015). https://doi.org/10.1016/j.carbon.2015.07.044

    Article  CAS  Google Scholar 

  3. G. Song, Z. Li, A. Meng, M. Zhang, K. Li, K. Zhu, J. Alloys Compd. 706, 147 (2017). https://doi.org/10.1016/j.jallcom.2017.02.229

    Article  CAS  Google Scholar 

  4. W. Zhu, G.P. Kochanski, S. Jin, Science 282, 1471 (1998). https://doi.org/10.1126/science.282.5393.1471

    Article  CAS  Google Scholar 

  5. F. Maier, J. Ristein, L. Ley, Phys. Rev. B 64, 165411 (2001). https://doi.org/10.1103/PhysRevB.64.165411

    Article  CAS  Google Scholar 

  6. P.M. Koinkar, P.P. Patil, M.A. More, V.N. Tondare, D.S. Joag, Vacuum 72, 321 (2003). https://doi.org/10.1016/j.vacuum.2003.08.010

    Article  CAS  Google Scholar 

  7. Y. Wu, B. Yang, B. Zong, H. Sun, Z. Shen, Y. Feng, J. Mater. Chem. 14, 469 (2004). https://doi.org/10.1039/b311682d

    Article  CAS  Google Scholar 

  8. A. Saravanan, B.R. Huang, D. Manoharan, D. Kathiravan, I.N. Lin, J. Mater. Chem. C 4, 9727 (2016). https://doi.org/10.1039/c6tc03340g

    Article  CAS  Google Scholar 

  9. S. Zaitsev, Physical Classification of Diamond, 1st ed. (Springer, City, 2001), pp. 5–15 https://doi.org/10.1007/978-3-662-04548-0_7

  10. X.L. Peng, Thin Solid Films 370, 63 (2000). https://doi.org/10.1016/S0040-6090(00)00721-5

    Article  CAS  Google Scholar 

  11. K. Subramanian, W.P. Kang, J.L. Davidson, W.H. Hofmeister, B.K. Choi, M. Howell, Diamond Relat. Mater. 14, 2099 (2005). https://doi.org/10.1016/j.diamond.2005.08.068

    Article  CAS  Google Scholar 

  12. S.G. Wang, Q. Zhang, S.F. Yoon, J. Ahn, Q. Zhou, Q. Wang, D.J. Yang, J.Q. Li, S. Zhang Shanyong, Surf. Coat. Technol. 167, 143 (2003). https://doi.org/10.1016/S0257-8972(02)00901-5

    Article  CAS  Google Scholar 

  13. D. Pradhan, Y.C. Lee, C.W. Pao, W.F. Pong, I.N. Lin, Diamond Relat. Mater. 15, 2001 (2006). https://doi.org/10.1016/j.diamond.2006.07.026

    Article  CAS  Google Scholar 

  14. O. Chubenko, S.S. Baturin, S.V. Baryshev, J. Appl. Phys. 125, 205303.1 (2019). https://doi.org/10.1063/1.5085679

    Article  CAS  Google Scholar 

  15. Z. Zhai, B. Leng, N. Yang, B. Yang, X. Jiang, Small 15, 1901527 (2019). https://doi.org/10.1002/smll.201901527

    Article  CAS  Google Scholar 

  16. T.H. Chang, P.Y. Hsieh, S. Kunuku, S.C. Lou, D. Manoharan, K.C. Leou, I.N. Lin, N.H. Tai, A.C.S. Appl, Mater. Interfaces 7, 27526 (2015). https://doi.org/10.1021/acsami.5b09778

    Article  CAS  Google Scholar 

  17. J.Y. Shim, H.K. Baik, Diamond Relat. Mater. 10, 847 (2001). https://doi.org/10.1016/S0925-9635(01)00378-8

    Article  CAS  Google Scholar 

  18. O.A. Williams, Diamond Relat. Mater. 20, 621 (2011). https://doi.org/10.1016/j.diamond.2011.02.015

    Article  CAS  Google Scholar 

  19. Y.S. Zou, Z.X. Li, Y.F. Wu, Vacuum 84, 1347 (2010). https://doi.org/10.1016/j.vacuum.2010.03.002

    Article  CAS  Google Scholar 

  20. P. Scherrer, Nachr. Ges. Wiss. Göttingen 26, 98 (1918). https://doi.org/10.1007/978-3-662-33915-2_7

    Article  Google Scholar 

  21. J.I. Langford, A.J.C. Wilson, J. Appl. Crystallogr. 11, 102 (1978). https://doi.org/10.1107/s0021889878012844

    Article  CAS  Google Scholar 

  22. R.E. Shroder, R.J. Nemanich, J.T. Glass, Phys. Rev. B: Condens. Matter 41, 3738 (1990). https://doi.org/10.1103/PhysRevB.41.3738

    Article  CAS  Google Scholar 

  23. A.J.S. Fernandes, T. Santos, F.M. Costa, T. Holz, B.S. Archanjo, N.F. Santos, T.L. Vasconcelos, C.A. Achete, C.P. Gouvea, R.F. Silva, A.C.S. Appl, Mater. Interfaces 7, 24772 (2015). https://doi.org/10.1021/acsami.5b07633

    Article  CAS  Google Scholar 

  24. L. Cuiping, D. Wei, Q. Lirong, Diamond Relat. Mater. 49, 48 (2014). https://doi.org/10.1016/j.diamond.2014.08.003

    Article  CAS  Google Scholar 

  25. S. Prawer, K.W. Nugent, D.N. Jamieson, J.O. Orwa, L.A. Bursill, J.L. Peng, Chem. Phys. Lett. 332, 93 (2000). https://doi.org/10.1016/s0009-2614(00)01236-7

    Article  CAS  Google Scholar 

  26. K.Y. Teng, H.C. Chen, H.Y. Chiang, Diamond Relat. Mater. 24, 126 (2012). https://doi.org/10.1016/j.diamond.2011.12.025

    Article  CAS  Google Scholar 

  27. Y.-F. Chen, Surf. Sci. 380, 199 (1997). https://doi.org/10.1016/S0039-6028(96)01270-8

    Article  CAS  Google Scholar 

  28. K. Siuzdak, M. Ficek, M. Sobaszek, J. Ryl, M. Gnyba, P. Niedzialkowski, N. Malinowska, J. Karczewski, R. Bogdanowicz, A.C.S. Appl, Mater. Interfaces 9, 12982 (2017). https://doi.org/10.1021/acsami.6b16860

    Article  CAS  Google Scholar 

  29. Y. Show, V.M. Swope, G.M. Swain, Diamond Relat. Mater. 18, 1426 (2009). https://doi.org/10.1016/j.diamond.2009.09.011

    Article  CAS  Google Scholar 

  30. O.A. Williams, A. Kriele, J. Hees, M. Wolfer, W. Müller-Sebert, C.E. Nebel, Chem. Phys. Lett. 495, 84 (2010). https://doi.org/10.1016/j.cplett.2010.06.054

    Article  CAS  Google Scholar 

  31. W. Zhu, G.P. Kochanski, S. Jin, L. Seibles, J. Appl. Phys. 78, 2707 (1995). https://doi.org/10.1063/1.360066

    Article  CAS  Google Scholar 

  32. R.P. Antony, T. Mathews, K. Panda, B. Sundaravel, S. Dash, A.K. Tyagi, J. Phys. Chem. C 116, 16740 (2012). https://doi.org/10.1021/jp302578b

    Article  CAS  Google Scholar 

  33. K.H. Bayliss, R.V. Latham, Proc. R. Soc. Lond. A 403, 285 (1986). https://doi.org/10.1098/rspa.1986.0013

    Article  CAS  Google Scholar 

  34. G. Amaratunga, S. Silva, Appl. Phys. Lett. 68, 2529 (1996). https://doi.org/10.1063/1.116173

    Article  CAS  Google Scholar 

  35. C. Ducati, E. Barborini, P. Piseri, P. Milani, J. Robertson, J. Appl. Phys. 92, 5482 (2002). https://doi.org/10.1063/1.1512969

    Article  CAS  Google Scholar 

  36. K.J. Sankaran, S. Kunuku, K.C. Leou, N.H. Tai, I.N. Lin, A.C.S. Appl, Mater. Interfaces 6, 14543 (2014). https://doi.org/10.1021/am503823n

    Article  CAS  Google Scholar 

  37. W. Zhu, G.P. Kochanski, S. Jin, L. Seibles, D.C. Jacobson, M. McCormack, A.E. White, Appl. Phys. Lett. 67, 1157 (1995). https://doi.org/10.1063/1.114993

    Article  CAS  Google Scholar 

  38. G.B. Bachelet, G.A. Baraff, M. Schlüter, Phys. Rev. B 24, 4736 (1981). https://doi.org/10.1103/physrevb.24.4736

    Article  CAS  Google Scholar 

  39. W. Machado, J.A. Kintop, M.D. Siqueira, L.G. Ferreira, Phys. Rev. B: Condens. Matter 47, 13219 (1993). https://doi.org/10.1103/PhysRevB.47.13219

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Laboratory of superhard materials for useful experimental apparatus to this work. Furthermore, this work is supported by the Natural Science Foundation of China (51601124, 51901154), the Science and Technology Major Project of Shanxi (20181102013), and the Natural Science Foundation of Shanxi Province (201901D211092).

Funding

This work is supported by the Natural Science Foundation of China (51601124, 51901154), the Science and Technology Major Project of Shanxi (20181102013), and the Natural Science Foundation of Shanxi Province (201901D211092).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by YS, YY, and YZ. The first draft of the manuscript was written by YY and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yanyan Shen or Shengwang Yu.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Hei, H., Gao, J. et al. The effect of diamond film grain size on electron field emission performance. J Mater Sci: Mater Electron 33, 1395–1404 (2022). https://doi.org/10.1007/s10854-021-07558-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07558-y

Navigation