Skip to main content
Log in

Flash synthesis of zirconia nanoparticles by microwave forced hydrolysis

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Forced hydrolysis preparation of zirconia sols and powders by microwave heating of zirconium tetrachloride solutions at temperatures equal to 180 °C leads in a few minutes to monodispersed nanoscale zirconia particles. Synthesis was performed in a microwave reactor called the RAMO system. This microwave reactor was designed by the authors. This flash-synthesis process combines the advantages of forced hydrolysis (homogeneous precipitation) and microwave heating (very fast heating rates). The sols and powders were characterized by x-ray diffraction,photon correlation spectroscopy (PCS), small-angle x-ray scattering, and transmission electron microscopy. Sols are colloidally stable, which means that after 6 months no sedimentation is observed and the size distribution given by PCS measurements has not changed. For all synthesis conditions (with or without HCl, zirconium salt concentration, and synthesis time), zirconia polycrystalline particles were produced. According to the different analyses, these zirconia polycrystalline particles were constituted of aggregates of small primary clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.Y.Dai, H.C. Ong, and R.P.H. Chang, J. Mater. Res. 14, 1329 (1999).

    Article  CAS  Google Scholar 

  2. J.A. Belot, R.J. McNeely, A. Wang, C.J. Reedy, T.J. Marks, G.P.A. Yap, and A.L. Rheingold, J. Mater. Res. 14, 12 (1999).

    Article  CAS  Google Scholar 

  3. J. Si, S.B. Desu, and CY. Tsai, J. Mater. Res. 9, 1721 (1994).

    Article  CAS  Google Scholar 

  4. B.J. Gould, I.M. Povey, M.E. Pemble, and W.R. Flavell, J. Mater. Chem. 4, 1815 (1994).

    Article  CAS  Google Scholar 

  5. E.T. Kim and S.G. Yoon, Thin Solid Films 227, 7 (1993).

    Article  CAS  Google Scholar 

  6. A.S. Kao and G.L. Gorman, J. Appl. Phys. 67, 3826 (1990).

    Article  CAS  Google Scholar 

  7. A.H. Heuer, J. Am. Ceram. Soc. 70, 689 (1987).

    Article  CAS  Google Scholar 

  8. J.L. Shi, J. Mater. Res. 14, 1389 (1999).

    Article  CAS  Google Scholar 

  9. R. Ramamoorthy, S. Ramasamy, and D. Sundararaman, J. Mater. Res. 14, 90 (1999).

    Article  CAS  Google Scholar 

  10. E. Matijevic, Pure Appl. Chem. 60, 1479 (1988).

    Article  CAS  Google Scholar 

  11. S.L. Chen, P. Dong, G.H. Yang, and J.J. Yang, Ind. Eng. Chem. Res. 35, 4487 (1996).

    Article  CAS  Google Scholar 

  12. E. Matijevic, Acc. Chem. Res. 14, 22 (1981).

    Article  CAS  Google Scholar 

  13. A. Clearfield, Inorg. Chem. 3, 146 (1964).

    Article  CAS  Google Scholar 

  14. Y. Murase and E. Kato, J. Am. Ceram. Soc. 66, 196 (1983).

    Article  CAS  Google Scholar 

  15. P.E.D. Morgan, J. Am. Ceram. Soc. 67, C204 (1984).

    Article  Google Scholar 

  16. M.A. Blesa, A.J.G. Maroto, S.I. Passaggio, N.E. Figliolia, and G. Rigotti, J. Mater. Sci. 20, 4601 (1985).

    Article  CAS  Google Scholar 

  17. M.Z.C. Hu, M.T. Harris, and C.H. Byers, J. Colloid Interface Sci. 198, 87 (1998).

    Article  CAS  Google Scholar 

  18. P. Rigneau, K. Bellon, I. Zahreddine, and D. Stuerga, Eur. Phys. J. AP 7, 41 (1999).

    Article  CAS  Google Scholar 

  19. P. Rigneau, K. Bellon, and D. Stuerga, in Second European Workshop on Microwave Processing of Materials (Second European Workshop on Microwave Processing of Materials Proceedings, Karlsruhe, Germany, 1997), (M. Willert-Porada, Karlsruhe, Germany), p. 101.

  20. P. Rigneau, K. Bellon, and D. Stuerga, in Sixth International Conference on Microwave and High Frequency Heating (Sixth International Conference on Microwave and High Frequency Heating Proceedings, Fermo, Italy, 1997), (G. Breccia, Fermo, Italy), p. 465.

  21. D. Daichuan, H. Pinjie, and D. Shushan, Mater. Res. Bull. 30, 531 (1995).

    Article  Google Scholar 

  22. D. Daichuan, H. Pinjie, and D. Shushan, Mater. Res. Bull. 30, 537 (1995.)

  23. Y.T. Moon, D.K. Kim, and C.H. Kim, J. Am. Ceram. Soc. 78, 1103 (1995).

    Article  CAS  Google Scholar 

  24. R. Rodriguez-Clemente and J. Gomez-Morales, J. Cryst. Growth 169, 339 (1996).

    Article  CAS  Google Scholar 

  25. Y. Ma, E. Vileno, S.L. Suib, and P.K. Dutta, Chem. Mater. 9, 3023 (1997).

    Article  CAS  Google Scholar 

  26. S. Komarneni, Q.H. Li, and R. Roy, J. Mater. Chem. 4, 1903 (1994).

    Article  CAS  Google Scholar 

  27. I. Girnus, M-M. Pohl, J. Richter-Mendau, M. Schneider, M. Noack D. Venzke, and J. Caro, Adv. Mater. 7, 711 (1995).

    Article  CAS  Google Scholar 

  28. D. Stuerga and P. Gaillard, Tetrahedron 52, 5505 (1996).

    Article  CAS  Google Scholar 

  29. K.J. Randle, Chem. Ind. 19, 74 (1980).

    Google Scholar 

  30. N. De Jaeger, H. Demeyere, R. Finsy, R. Sneyers, J. Vanderdeelen, P. Van Der Meeren, and M. Van Laethem, Part. Part. Syst. Charact. 8, 179 (1991).

    Article  Google Scholar 

  31. R. Finsy andN. De Jaeger, Part. Part. Syst. Charact. 8, 187 (1991).

    Article  CAS  Google Scholar 

  32. R. Finsy, N. De Jaeger, R. Sneyers, and E. Geladé, Part. Part. Syst. Charact. 9, 125 (1992).

    Article  CAS  Google Scholar 

  33. A. Clearfield and PA. Vaughan, Acta Crystallogr. 9, 555 (1956).

    Article  CAS  Google Scholar 

  34. T.C.W. Mak, Can. J. Chem. 46, 3491 (1968).

    Article  CAS  Google Scholar 

  35. G.M. Muha and P.A. Vaughan, J. Chem. Phys. 33, 194 (1960).

    Article  CAS  Google Scholar 

  36. M. Aberg, Acta Chem. Scand. B 31, 171 (1977).

    Article  Google Scholar 

  37. E. Matijevic, Langmuir 2, 12 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellon, K., Chaumont, D. & Stuerga, D. Flash synthesis of zirconia nanoparticles by microwave forced hydrolysis. Journal of Materials Research 16, 2619–2622 (2001). https://doi.org/10.1557/JMR.2001.0360

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0360

Navigation