Skip to main content
Log in

Hydrous zirconium dioxide: interfacial properties, the formation of monodisperse spherical particles, and its crystallization at high temperatures

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The characteristics of hydrous zirconia gels obtained by hydrolysis of highly acidic ZrOCl2 · 8H2O solutions at ∼100‡C are described. Under adequate conditions, monodisperse spherical hydrous zirconia is obtained. The role of sulphate and chloride ions is described. The gel has a large water content, indicating only modest crosslinking. Crystallization upon heating takes place with the formation of both monoclinic and tetragonal zirconia polymorphs; X-ray line widening studies do not indicate a particle size-crystal structure correlation. On the basis of this observation and using Stranki's rule, the crystallization sequence upon heating is rationalized. Surface properties of hydrous zirconia are discussed on the basis of electrophoretic measurements, and compared with those of baddeleyte. The site binding model is not very adequate to describe these systems, and the existence of a very thin gel-like region at the baddeleyte-water interface is postulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Blesa, A. J. G. Maroto, S. I. Passaggio andA. E. Regazzoni, in “Water Chemistry of Nuclear Reactor Systems” (British Nuclear Energy Society, London, 1981) p. 247.

    Google Scholar 

  2. G. A. Urrutia, S. I. Passaggio, A. J. G. Maroto andM. A. Blesa,Nucl. Sci. Eng. 84 (1983) 120.

    Google Scholar 

  3. K. A. Burrill,Can. J. Chem. Eng. 55 (1977) 54.

    Google Scholar 

  4. Idem, ibid. 57 (1979)211.

    Google Scholar 

  5. G. A. Urrutia, A. J. G. Maroto, R. Fernandez Prini andM. A. Blesa,Nucl. Technol. 64 (1984) 107.

    Google Scholar 

  6. K. Ishigure andM. Kawaguchi, in IAEA Specialists' Meeting on the influence of Water Chemistry on Fuel Element Cladding Behaviour in Water Cooled Power Reactors, Leningrad (USSR), Report IWGFPT/13 (International Atomic Energy Agency, 1983).

  7. A. C. Ponting andR. S. Rodliffe, in “Water Chemistry of Nuclear Reactor Systems 3” (British Nuclear Energy Society, London, 1983) p. 43.

    Google Scholar 

  8. A. E. Regazzoni, M. A. Blesa andA. J. G. Maroto,J. Colloid Interf. Sci. 91 (1983) 560.

    Google Scholar 

  9. R. A. Ploc,J. Nucl. Mater. 28 (1968) 48.

    Google Scholar 

  10. Idem, ibid. 61 (1976) 79.

    Google Scholar 

  11. Idem, ibid. 91 (1980) 322.

    Google Scholar 

  12. Idem, ibid. 99 (1981) 124.

    Google Scholar 

  13. Idem, ibid. 115 (1983) 110.

    Google Scholar 

  14. C. B. Amphlett, L. A. McDonald andM. J. Redman,J. Inorg. Nucl. Chem. 6 (1958) 236.

    Google Scholar 

  15. P. Pascal, “Traité de Chimie Minérale”, Vol. IX (Masson, Paris, 1963) p. 499.

    Google Scholar 

  16. F. Kepác, “Atomic Energy Reviewrd, Supplement No. 2 (IAEA, Vienna, 1981).

    Google Scholar 

  17. D. E. Yates, S. Levine andT. W. Healy,J. Chem. Soc. Faraday Trans. I 70 (1978) 1807.

    Google Scholar 

  18. J. A. Davis, R. O. James andJ. O. Leckie,J. Colloid Interface Sci. 63 (1978) 1807.

    Google Scholar 

  19. J. A. Davis andR. O. James,ibid. 67 (1978) 90.

    Google Scholar 

  20. R. O. James andG. A. Parks, in “Surface and Colloid Science”, Vol. 12, edited by E. Matijevic (Plenum, New York, 1982) p. 119.

    Google Scholar 

  21. R. Roy,J. Amer. Ceram. Soc. 52 (1969) 344.

    Google Scholar 

  22. J. Livage andJ. Lemerle,Ann. Rev. Mater. Sci. 12 (1982) 103.

    Google Scholar 

  23. D. Vivien, J. Livage andC. Mazières,J. Chim. Phys. 67 (1970) 199.

    Google Scholar 

  24. G. Gimblett, A. A. Rahman andK. S. W. Sing,J. Chem. Techn. Biotechnol. 30 (1980) 51.

    Google Scholar 

  25. R. C. Garvie,J. Phys. Chem. 69 (1965) 1238.

    Google Scholar 

  26. Idem, ibid. 82 (1978) 218.

    Google Scholar 

  27. T. Mitsuhashi, M. Ichira andU. Tatsuke,J. Amer. Ceram. Soc. 57 (1974) 97.

    Google Scholar 

  28. H. Nishizawa, N. Yamasaki, K. Matsuoka andH. Mitsushio,ibid. 65 (1982) 343.

    Google Scholar 

  29. E. Crucean andB. Rand,Trans. J. Brit. Ceram. Soc. 78 (1979) 58.

    Google Scholar 

  30. Y. Murase andE. Kato,J. Amer. Ceram. Soc. 66 (1983) 196.

    Google Scholar 

  31. H. Nishizawa, N. Yamasaki, K. Matsuoka andH. Mitsushio,ibid. 65 (1982) 343.

    Google Scholar 

  32. G. M. Wolten,ibid. 46 (1963) 418.

    Google Scholar 

  33. J. A. Bailey,Proc. Roy. Soc. Ser. A 279 (1964) 395.

    Google Scholar 

  34. J. A. Bailey, D. Lewis, Z. M. Librant andL. J. Porter,Trans. J. Brit. Ceram. Soc. 71 (1972) 25.

    Google Scholar 

  35. E. D. Whitney,Trans. Faraday Soc. 61 (1965) 1991.

    Google Scholar 

  36. R. Cypres, R. Wollast andJ. Raucq,Ber. Deut. Keram. Gessel. 40 (1963) 527.

    Google Scholar 

  37. H. P. Klug andL. E. Alexander, “X-Ray Diffraction Procedures” (Wiley, New York, 1967) p. 491.

    Google Scholar 

  38. R. W. O'brien andL. R. White,J. Chem. Soc. Faraday Trans. II 74 (1978) 1607.

    Google Scholar 

  39. P. H. Wiersema, A. L. Loeb andJ. Th. G. Overbeek,J. Colloid Interface Sci. 22 (1966) 78.

    Google Scholar 

  40. F. G. R. Gimblett, A. A. Rahman andK. W. Sing,ibid. 84 (1981) 337.

    Google Scholar 

  41. J. Dousma andP. L. De Bruyn,ibid. 56 (1976) 527.

    Google Scholar 

  42. Idem, ibid. 64 (1976) 154.

    Google Scholar 

  43. J. Dousma, T. J. Van Den Hoven andP. L. De Bruyn,J. Inorg. Nucl. Chem. 40 (1978) 1089.

    Google Scholar 

  44. J. S. Johnson andK. A. Kraus,J. Amer. Chem. Soc. 78 (1956) 3937.

    Google Scholar 

  45. A. Clearfield,Inorg. Chem. 78 (1964) 146.

    Google Scholar 

  46. Y. Murase andE. Kato,J. Cryst. Growth 50 (1980) 509.

    Google Scholar 

  47. A. Bell andE. Matijevíc,J. Inorg. Nucl. Chem. 37 (1975) 907.

    Google Scholar 

  48. A. Bell andE. MatijevíC,J. Phys. Chem. 78 (1974)2621.

    Google Scholar 

  49. E. Matijevic, M. Budnik andL. Meites,J. Colloid Interface Sci. 61 (1977) 302.

    Google Scholar 

  50. E. Matijevic,Acc. Chem. Res. 14 (1981) 22.

    Google Scholar 

  51. J. Th. Overbeek,Adv. Colloid Interface Sci. 15 (1982) 251.

    Google Scholar 

  52. F. A. Cotton andG. Wilkinson, “Advanced Inorganic Chemistry”, 2nd Edn (Interscience, New York, 1966) p. 917.

    Google Scholar 

  53. J. Livage, K. Doi andC. Mazieres,J. Ceram. Soc. 51 (1968) 349.

    Google Scholar 

  54. J. R. Fryer, J. L. Hutchinson andR. Paterson,J. Colloid Interface Sci. 34 (1970) 238.

    Google Scholar 

  55. Idem, Nature 226 (1970) 150.

    Google Scholar 

  56. A. A. Rahman, Third European Symposium on Thermal Analysis and Calorimetry, Interlaken, Switzerland (1984).

    Google Scholar 

  57. E. Matijevic, M. Budnik andL. Meites,J. Colloid Interface Sci. 61 (1976) 302.

    Google Scholar 

  58. “JANAF Thermochemical Tables” (National Bureau of Standards, Washington, 1971).

  59. A. Clearfield andP. A. Vaughan,Acta Crystallogr. 9 (1956) 555.

    Google Scholar 

  60. G. Tenfer,ibid. 15 (1962) 1187.

    Google Scholar 

  61. H. Furedi-Milhofer,Pure Appl. Chem. 53 (1981) 2041.

    Google Scholar 

  62. R. Kern, Symposium on the Reactivity of Solids, Dijon, France, 1984, edited by P. Barret and J. C. Dufour (Elsevier) in press.

  63. E. Tani, M. Yoshimura andS. Somiya,J. Amer. Ceram. Soc. 66 (1983) 11.

    Google Scholar 

  64. Idem, ibid. 64 (1981) c-181.

    Google Scholar 

  65. M. C. Veiga, M. Vallet, A. Jerez andC. Pico,Ann. Chim. France 6 (1981) 345.

    Google Scholar 

  66. S. Nadiv andI. J. Lin, Paper 9-0-1, 10th International Symposium on the Reactivity of Solids, Dijon, 1984, edited by P. Barret and J. C. Dufour (Elsevier) in press.

  67. P. H. Tewari, R. H. Tuxworth andW. Lee, in “Proceedings of the Symposium on Oxide-Electrolyte Interfaces”, Miami (1972) p. 91.

  68. S. Mattson andA. J. Pugh,Soil Sci. 38 (1934) 299.

    Google Scholar 

  69. K. C. Ray andS. Khan,Ind. J. Chem. 13 (1975) 577.

    Google Scholar 

  70. E. J. W. Verwey,Rec. Trav. Chim. 60 (1941) 625.

    Google Scholar 

  71. R. H. Yoon, T. Salman andG. Donnay,J. Colloid Interface Sci. 70 (1979) 483.

    Google Scholar 

  72. S. K. Milonjíc, Z. E. Ilic andM. M. Kopecni,Colloids Surfaces 6 (1983) 167.

    Google Scholar 

  73. H. Kita, N. Henni, K. Shimazu, H. Hatori andK. Tanabe,J. Chem. Soc. Faraday Trans. I 77 (1981) 2451.

    Google Scholar 

  74. F. S. Mandel andH. G. Spencer,J. Colloid Interface Sci. 77 (1980) 577.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blesa, M.A., Maroto, A.J.G., Passaggio, S.I. et al. Hydrous zirconium dioxide: interfacial properties, the formation of monodisperse spherical particles, and its crystallization at high temperatures. J Mater Sci 20, 4601–4609 (1985). https://doi.org/10.1007/BF00559350

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00559350

Keywords

Navigation