Skip to main content
Log in

Model for zinc oxide varistor

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Zinc oxide varistors are very complex systems, and the dominant mechanism of voltage barrier formation in these systems has not been well established. Yet the MNDO quantum mechanical theoretical calculation was used in this work to determine the most probable defect type at the surface of a ZnO cluster. The proposed model represents well the semiconducting nature as well as the defects at the ZnO bulk and surface. The model also shows that the main adsorption species that provide stability at the ZnO surface are O-, O2 -, and O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. E. Pike and C. H. Seager, J. Appl. Phys. 50, 3414 (1979).

    Article  CAS  Google Scholar 

  2. M. Matsuoka, Jpn. J. Appl. Phys. 10, 73 (1971).

    Article  Google Scholar 

  3. W. D. Kingery and H. K. Bowen, Introduction of Ceramics, 2nd ed. (John Wiley & Sons, New York, 1975).

    Google Scholar 

  4. G. D. Mahan, J. Appl. Phys. 54, 3825 (1983).

    Article  CAS  Google Scholar 

  5. V. Schwing and B. Hoffmann, J. Appl. Phys. 57, 5372 (1985).

    Article  CAS  Google Scholar 

  6. K. Sato and Y. Takada, Advances in Ceramics, edited by F. M. Yan and H. H. Heuer (1983), Vol. 7, p. 22.

  7. T. K. Gupta and W.G. Carlson, J. Mater. Sci. 20, 3487 (1985).

    Article  CAS  Google Scholar 

  8. K. Sato and Y. Takada, J. Appl. Phys. 53, 8819 (1982).

    Article  CAS  Google Scholar 

  9. T. K. Gupta and W.G. Carlson, J. Appl. Phys. 52, 4104 (1981).

    Article  CAS  Google Scholar 

  10. T. K. Gupta and W. G. Carlson, Advances in Ceramics, edited by F.M. Yan and H. H. Heuer (1983), p. 30.

  11. T. K. Gupta and W.G. Carlson, J. Appl. Phys. 53, 7401 (1982).

    Article  CAS  Google Scholar 

  12. M. J. S. Dewar and W.J. Thiel, Am. Ceram. Soc. 9, 4899 (1977).

    Google Scholar 

  13. J. J. P. Stewart, Quantum Chem. Prog. Exch. Bull., 343 (1983).

  14. M. J. S. Dewar and K. M. Merz, Jr., Organometallics 5, 1494 (1986).

    Article  CAS  Google Scholar 

  15. M. J. S. Dewar and K. M. Merz, Jr., Organometallics 7, 552 (1988).

    Article  Google Scholar 

  16. J. J. P. Stewart, J. Comp. Chem. 12, 320 (1991).

    Article  CAS  Google Scholar 

  17. T. Oshiro, C. K. Lutrus, D.E. Hagen, S. Beck, and S. H. S. Salk, Solid State Commun. 87, 801 (1993).

    Article  CAS  Google Scholar 

  18. J. B. L. Martins, E. Longo, and J. Andres, Int. J. Quantum Chem. 27, 643 (1993).

    Article  CAS  Google Scholar 

  19. J. B. L. Martins, J. Andres, E. Longo, and C. A. Taft, Int. J. Quantum Chem. (1995) (in press).

  20. S. Fujitsu, K. Koumoto, and H. Yanagida, Solid State Ionics 32/33, 482 (1989).

    Article  Google Scholar 

  21. D. Binesti, Ph.D. Thesis, University of Bordeaux I, France (1985).

  22. K. Takahashi, U. Miyoshi, K. Maeda, and O. Namazaki, Grain Boundaries in Semiconductors (Elsevier, New York, 1982), p. 39.

    Google Scholar 

  23. E. R. Leite, J. A. Varela, and E. Longo, J. Mater. Sci. 27, 5325 (1992).

    Article  CAS  Google Scholar 

  24. Shih-Chi-Chang, J. Vac. Sci. Technol. 17, 242 (1980).

    Google Scholar 

  25. K. Eda, J. Appl. Phys. 49, 2964 (1978).

    Article  CAS  Google Scholar 

  26. T. K. Gupta and W.G. Carlson, J. Appl. Phys. 53, 7401 (1982).

    Article  CAS  Google Scholar 

  27. R. Kuwabara, H. Adachi, and T. Morimoto, Surf. Sci. 193, 271 (1988).

    Article  CAS  Google Scholar 

  28. R. Sekine, H. Adachi, and T. Morimoto, Surf. Sci. 208, 177 (1989).

    Article  CAS  Google Scholar 

  29. R. C. Baetzold, J. Phys. Chem. 89, 4150 (1985).

    Article  CAS  Google Scholar 

  30. J. A. Rodriguez and C.T. Campbell, Langmuir 4, 1006 (1988); J. A. Rodriguez and C. T. Campbell, J. Phys. Chem. 91, 6648 (1987).

    Article  CAS  Google Scholar 

  31. L. Ley, R. A. Pollack, F. R. McFeely, S.P. Kowalczk, and D. A. Shirley, Phys. Rev. B 9, 600 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, J.D., Longo, E., Leite, E.R. et al. Model for zinc oxide varistor. Journal of Materials Research 13, 1152–1157 (1998). https://doi.org/10.1557/JMR.1998.0164

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1998.0164

Navigation