Skip to main content
Log in

The role of oxide optimization in improving the electrical properties of ZnO varistors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zinc oxide-based varistors are nonlinear voltage-dependent ceramic resistors used to suppress and limit transient voltage surges. However, due to their structural inhomogeneity, current concentration may come into existence, which causes thermal stress in local areas that even may destroy the components. As a result, these elements lose their reliability and ability to protect. In this study, the effect of structural inhomogeneity on their electrical properties was analyzed and demonstrated. This analysis contributes to a deeper understanding of the impact of structural inhomogeneity on their performance in terms of surge energy absorption capability. In addition, to make a technological contribution, experiments using the classical proceeding were carried out to identify the optimal proportions for the following oxides (Bi2O3, Nb2O5, MnO2, Co3O4, Cr2O3, NiO, Ce2O3, La2O3). Using the optimal proportions of the oxides, a new ZnO varistor was manufactured. Characterization of the manufactured new varistor showed that it has a low inhomogeneity factor β = 0.11 and a high nonlinear coefficient α = 100 ± 1. This demonstrates that the manufactured varistor has a reasonable structural homogeneity, which allows for a uniform distribution of the current passing through it. For further evidence, the new varistor was shocked by 8/20 μs regular high pulses with a current of 15KA and a voltage of 3 kV for each pulse. No puncture failure was observed, which indicates its ability to absorb excess voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Al-Abdul, Khalaf. 1991. 'Contribution à l'étude du comportement des varistances à base d'oxyde de zinc, par la mesure des impédances complexes à basse et à moyenne fréquences', Toulouse.

  2. K. Al-Abdullah, Elaboration of ZnO based varistors and the effect of the rare-earths on their electrical behaviour. Energy Procedia 19, 116–127 (2012)

    Article  CAS  Google Scholar 

  3. Batal, MA, G Nashed, and Fares Haj %J Latin-American Journal of Physics Education Jneed. 2012. 'Electrical properties of nanostructure tin oxide thin film doped with copper prepared by Sol-Gel method', 6: 311–16.

  4. J. Bernasconi, H.P. Klein, B. Knecht, S. Strässler, Investigation of various models for metal oxide varistors. J. Electron. Mater. 5, 473–495 (1976)

    Article  CAS  Google Scholar 

  5. D. Bremecker, P. Keil, M. Gehringer, D. Isaia, J. Rödel, T. Frömling, Mechanically tuned conductivity at individual grain boundaries in polycrystalline ZnO varistor ceramics. J. Appl. Phys. 127, 034101 (2020)

    Article  CAS  Google Scholar 

  6. M. Chawla, N. Shekhawat, S. Aggarwal, A. Sharma, K.G.M. Nair, Cole-cole analysis and electrical conduction mechanism of N+ implanted polycarbonate. J. Appl. Phys. 115, 18410 (2014)

    Article  Google Scholar 

  7. F. Cui, Xu. Zhijun, R. Chu, G. Li, Improving electrical properties of ZnO–Bi2O3–Sb2O3–MnO2 varistors by doping with pre-synthesized Bi–Si–O phase. J. Alloy. Compd. 836, 154692 (2020)

    Article  CAS  Google Scholar 

  8. R. Danzer, B. Kaufmann, P. Supancic, Failure of high power varistor ceramic components. J. Eur. Ceram. Soc. 40, 3766–3770 (2020)

    Article  CAS  Google Scholar 

  9. K. Eda, Zinc oxide varistors. IEEE Electr. Insul. Mag. 5, 28–30 (1989)

    Article  Google Scholar 

  10. R. Einzinger, Metal oxide varistors. Annu. Rev. Mater. Sci. 17, 299–321 (1987)

    Article  CAS  Google Scholar 

  11. R. Einzinger, Metal oxide varistor action -a homojunction breakdown mechanism. Appl. Surf. Sci. 1, 329–340 (1978)

    Article  CAS  Google Scholar 

  12. Fang, Z., B. Wang, and Z. Fu. 2020. "Failure Modes and Energy Handling Capability of ZnO Varistors with Different Electrode Edge Margins Stressed by Current Impulses." In 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), 1–4.

  13. A. Goswami, A.P. Goswami, Dielectric and optical properties of ZnS films. Thin Solid Films 16, 175–185 (1973)

    Article  CAS  Google Scholar 

  14. Gould, RD, and M %J Superficies y vacio Din. 1999. 'Capacitance Variations in Cd3As2 Thin Film Sandwich Structures': 230–33.

  15. T.K. Gupta, Application of Zinc Oxide Varistors. J. Am. Ceram. Soc. 73, 1817–1840 (1990)

    Article  CAS  Google Scholar 

  16. He, J., J. Hu, and Q. Chen. 2006. "Microstructure Simulation on Puncturing Phenomenon of ZnO Varistor under High Current." In 2006 IEEE 8th International Conference on Properties & applications of Dielectric Materials, 959–62.

  17. He, Jinliang. 2019a. 'Conduction Mechanisms of ZnO Varistors.' in, Metal Oxide Varistors.

  18. He, Jinliang 2019b. 'Introduction of Varistor Ceramics.' in, Metal Oxide Varistors.

  19. He, Jinliang. 2019c. 'Microstructural Electrical Characteristics of ZnO Varistors.' in, Metal Oxide Varistors.

  20. Y. He, B. Wei, Z. Fu, M. Dai, J. Liu, MOV failure modes and microstructural characteristics under operating duty tests with multiwaveform multipulse currents. IEEE Trans. Power Delivery 33, 2274–2283 (2018)

    Article  Google Scholar 

  21. Hu, J., J. Liu, J. He, W. Long, and F. Luo. 2009. "Residual voltage properties of ZnO varistors doped with Y2O3 for high voltage gradient." In 2009 IEEE 9th International Conference on the Properties and Applications of Dielectric Materials, 1154–57.

  22. W. Huang, L. Chai, Z. Li, X. Yang, N. Guo, Bo. Song, Evolution of microstructure and grain boundary character distribution of a tin bronze annealed at different temperatures. Mater. Charact. 114, 204–210 (2016)

    Article  CAS  Google Scholar 

  23. A. Izoulet, S. Guillemet-Fritsch, C. Estournès, J. Morel, Microstructure control to reduce leakage current of medium and high voltage ceramic varistors based on doped ZnO. J. Eur. Ceram. Soc. 34, 3707–3714 (2014)

    Article  CAS  Google Scholar 

  24. Li. Ji-le, G.-H. Chen, C.-L. Yuan, Microstructure and electrical properties of rare earth doped ZnO-based varistor ceramics. Ceram. Int. 39, 2231–2237 (2013)

    Article  Google Scholar 

  25. He. Jinliang, Z. Rong, C. Qingheng, C. Shuiming, G. Zhicheng, H. Se-Won, C. Han-Goo, Nonuniformity of electrical Characteristics in microstructures of ZnO surge varistors. IEEE Trans. Power Delivery 19, 138–144 (2004)

    Article  Google Scholar 

  26. K. Kang, J. Yan, J. Zhang, Du. Jinghong, J. Yi, Y. Liu, R. Bao, S. Tan, G. Gan, (Ge, GeO2, Ta2O5, BaCO3) co-doping TiO2 varistor ceramics. J. Alloy. Compd. 649, 1280–1290 (2015)

    Article  CAS  Google Scholar 

  27. B. Kaufmann, T. Billovits, M. Kratzer, C. Teichert, P. Supancic, A modelling approach to describe the DC current-voltage behaviour of low-voltage zinc oxide varistors. Open Ceramics 6, 100113 (2021)

    Article  Google Scholar 

  28. J.T.C. van Kemenade, R.K. Eijnthoven, Direct determination of barrier voltage in ZnO varistors. J. Appl. Phys. 50, 938–941 (1979)

    Article  Google Scholar 

  29. O.L. Krivanek, P. Williams, Y.-C. Lin, Direct observation of voltage barriers in ZnO varistors. Appl. Phys. Lett. 34, 805–806 (1979)

    Article  CAS  Google Scholar 

  30. Kudla, A., and D. Brzezinska. 1999. "Photoelectric methods of potential barrier heights determination in the MOS structure." In IMTC/99. Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference (Cat. No.99CH36309), 1934–37 vol.3.

  31. Lee, Sang-Ki, Sung-Gurl Cho, and Young-Jae J The Korean Journal of Ceramics Shim. 1999. 'Characteristics of ZnO Varistors with Praseodymium Oxide', 5: 357–62.

  32. Levinson, L., and H. J American Ceramic Society Bulletin Philipp. 1986. 'Zinc oxide varistors a review', 65: 639–46.

  33. L.M. Levinson, H.R. Philipp, The physics of metal oxide varistors. J. Appl. Phys. 46, 1332–1341 (1975)

    Article  CAS  Google Scholar 

  34. X. Liao, Pu. Yong, D. Zhu, Synergistic effect of co-doping of nano-sized ZnO and Nb2O5 on the enhanced nonlinear coefficient of TiO2 varistor with low breakdown voltage. J. Alloys Comp. 886, 161170 (2021)

    Article  CAS  Google Scholar 

  35. G.D. Mahan, L.M. Levinson, H.R. Philipp, Theory of conduction in ZnO varistors. J. Appl. Phys. 50, 2799–2812 (1979)

    Article  CAS  Google Scholar 

  36. P. Meng, Gu. Shanqiang, J. Wang, Hu. Jun, J. He, Improving electrical properties of multiple dopant ZnO varistor by doping with indium and gallium. Ceram. Int. 44, 1168–1171 (2018)

    Article  CAS  Google Scholar 

  37. P. Meng, C. Yuan, Xu. Heng, S. Wan, Q. Xie, J. He, H. Zhao, Hu. Jun, J. He, Improving the protective effect of surge arresters by optimizing the electrical property of ZnO varistors. Electric. Power. Sys. Res. 178, 106041 (2020)

    Article  Google Scholar 

  38. P. Meng, X. Zhao, X. Yang, Wu. Jinbo, Q. Xie, J. He, Hu. Jun, J. He, Breakdown phenomenon of ZnO varistors caused by non-uniform distribution of internal pores. J. Eur. Ceram. Soc. 39, 4824–4830 (2019)

    Article  CAS  Google Scholar 

  39. Morales-Masis, Monica. 2007. 'Fabrication and Study of ZnO Micro- and Nanostructures', Wright State University.

  40. W.G. Morris, Physical properties of the electrical barriers in varistors. J. Vaccum. Sci. Technol. 13, 926–931 (1976)

    Article  CAS  Google Scholar 

  41. C.-W. Nahm, Nb2O5 doping effect on electrical properties of ZnO–V2O5–Mn3O4 varistor ceramics. Ceram. Int. 38, 5281–5285 (2012)

    Article  CAS  Google Scholar 

  42. C.-W. Nahm, The nonlinear properties and stability of ZnO-Pr6O11-CoO-Cr2O3-Er2O3 ceramic varistors. Mater. Lett. 47, 182–187 (2001)

    Article  CAS  Google Scholar 

  43. Nan, Ce-Wen, and David R. Clarke. 1996. 'Effect of Variations in Grain Size and Grain Boundary Barrier Heights on the Current- Voltage Characteristics of ZnO Varistors', 79: 3185–92.

  44. E. Olsson, G.L. Dunlop, Characterization of individual interfacial barriers in a ZnO varistor material. J. Appl. Phys. 66, 3666–3675 (1989)

    Article  CAS  Google Scholar 

  45. F. Peng, D. Zhu, Effect of sintering temperature and Ho2O3 on the properties of TiO2-based varistors. Ceram. Int. 44, 21034–21039 (2018)

    Article  CAS  Google Scholar 

  46. R. Puigdollers, P.S. Antonio, S. Tosoni, G. Pacchioni, Increasing Oxide reducibility: the role of metal/oxide interfaces in the formation of oxygen vacancies. ACS Catal. 7, 6493–6513 (2017)

    Article  Google Scholar 

  47. P.S. Sahoo, A. Panigrahi, S.K. Patri, R.N.P. Choudhary, Impedance spectroscopy of Ba3Sr2DyTi3V7O30 ceramic. Bull. Mater. Sci. 33, 129–134 (2010)

    Article  CAS  Google Scholar 

  48. F. Stucki, P. Brüesch, F. Greuter, Electron spectroscopic studies of electrically active grain boundaries in ZnO. Surf. Sci. 189–190, 294–299 (1987)

    Article  Google Scholar 

  49. H.-T. Sun, L.-Y. Zhang, Xi. Yao, Electrical nonuniformity of grain boundaries within ZnO varistors. J. Am. Ceram. Soc. 76, 1150–1155 (1993)

    Article  CAS  Google Scholar 

  50. Sweetana, A, T Gupta, W Carlson, R Grekila, N Kunkle, and J Osterhout. 1983. "Gapless surge arresters for power systems applications. Volume 1. Development of 500-and 1200-kV arresters. Final report." In.: Westinghouse Electric Corp., Bloomington, IN (USA). Distribution Apparatus Div.

  51. M. Tao, O. Bui Ai, Dorlanne, and A. Loubiere., Different ‘“single grain junctions”’ within a ZnO varistor. J. Appl Phys. 61, 1562–1567 (1987)

    Article  CAS  Google Scholar 

  52. Tu, Y., L. Ding, J. He, J. Hu, and R. Zeng. 2006. "Effect of Nonuniformities of Microstructure and Electrical Property of Grain Boundary to the Global Electrical Characteristics." In 2006 IEEE 8th International Conference on Properties & applications of Dielectric Materials, 95–98.

  53. A. Vojta, D.R. Clarke, Microstructural origin of current localization and “puncture’’ failure in varistor ceramics. J. Appl. Phys. 81, 985–993 (1997)

    Article  CAS  Google Scholar 

  54. H. Wang, S. Qi, Y. Zhou, H. Zhao, An economical dopant for improving the comprehensive electrical properties of ZnO varistor ceramics. Mater. Lett. 279, 128471 (2020)

    Article  CAS  Google Scholar 

  55. H. Wang, W. Li, J.F. Cordaro, Single junctions in ZnO varistors studied by current-voltage characteristics and deep level transient spectroscopy. Jpn. J. Appl. Phys. 34, 1765–1771 (1995)

    Article  CAS  Google Scholar 

  56. H. Wang, W.A. Schulze, J.F. Cordaro, Averaging effect on current-voltage characteristics of ZnO varistors. Jpn. J. Appl. Phys. 34, 2352–2358 (1995)

    Article  CAS  Google Scholar 

  57. J. Wong, Barrier voltage measurement in metal oxide varistors. J. Appl. Phys. 47, 4971–4974 (1976)

    Article  CAS  Google Scholar 

  58. D. Xu, X.N. Cheng, M.S. Wang, L.Y. Shi, Microstructure and electrical properties of La2O3-Doped ZnO-Bi2O3 based varistor ceramics. Adv. Mater. Res. 79–82, 2007–2010 (2009)

    Article  Google Scholar 

  59. H.N. Yoshimura, A.L. Molisani, N.E. Narita, J.L.A. Manholetti, J.M. Cavenaghi, Mechanical properties and microstructure of zinc oxide varistor ceramics. Mater. Sci. Forum 530–531, 408–413 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuad Alhaj Omar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhaj Omar, F. The role of oxide optimization in improving the electrical properties of ZnO varistors. J Mater Sci: Mater Electron 32, 28553–28572 (2021). https://doi.org/10.1007/s10854-021-07234-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07234-1

Navigation