Skip to main content
Log in

Investigation of phase evolution within ZnO–Bi2O3 varistors utilizing thin film prototypes

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Varistors are technologically important for their large energy handling capabilities and highly nonlinear electrical behavior when voltages above a characteristic switch field are applied. It is generally accepted that the prototypical ZnO–Bi2O3 varistor system forms electrostatic Schottky barriers at grain boundaries in response to residual Bi and other dopants left at grain surfaces during Bi2O3 segregation. While barrier heights can be modulated with formulation and defect chemistry, mechanisms by which dopant locations, defect compensation, and local phases determine varistor behavior are not completely understood. Bulk studies are challenging due to random grain boundary formation and difficulties studying individual boundaries. To circumvent these challenges in the ZnO–Bi2O3 varistor system, we use as-deposited and post-heat-treated thin film ZnO–Bi2O3 prototypes to simulate bulk varistor grain boundary phase formation and investigate resulting defect chemistry. Characterizing interactions between Bi2O3 films deposited on thin film and single-crystal ZnO by XRD and TEM-EDS revealed primarily Zn-out diffusion, resulting in two (Bi2O3)1−x(ZnO)x, or BZO, phases. Using these results, we present a saturated front model correlating changes in Bi2O3 thickness to phase evolution. We subsequently explore the influence of MnO doping leading to substantial changes in phase evolution for post-heat-treated (Mn:ZnO)–Bi2O3 stacks. Dopant-controlled Bi2O3 phase formations yield a 12 × difference, on average, between nonlinear coefficients for γ*- and β*-BZO.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(80-):242–246. https://doi.org/10.1126/science.1124005

    Article  CAS  Google Scholar 

  2. Wang C, Ma S, Sun A et al (2014) Characterization of electrospun Pr-doped ZnO nanostructure for acetic acid sensor. Sens Actuators B Chem 193:326–333. https://doi.org/10.1016/j.snb.2013.11.058

    Article  CAS  Google Scholar 

  3. Xian F, Miao K, Bai X et al (2013) Characteraction of Ag-doped ZnO thin film synthesized by sol-gel method and its using in thin film solar cells. Optik (Stuttg) 124:4876–4879. https://doi.org/10.1016/j.ijleo.2013.02.034

    Article  CAS  Google Scholar 

  4. Clarke DR (1999) Varistor ceramics. J Am Ceram Soc 82:485–502

    Article  CAS  Google Scholar 

  5. Pandey RK, Stapleton WA, Padmini P et al (2012) Magnetically tuned varistor-transistor hybrid device. AIP Adv. https://doi.org/10.1063/1.4773328

    Article  Google Scholar 

  6. Mahan GD, Levinson LM, Philipp HR (1979) Theory of conduction in ZnO varistors. J Appl Phys 50:2799–2812. https://doi.org/10.1063/1.326191

    Article  CAS  Google Scholar 

  7. Selim FA, Gupta TK, Hower PL, Carlson WG (1980) Low voltage ZnO varistor: device process and defect model. J Appl Phys 51:765–768. https://doi.org/10.1063/1.327338

    Article  CAS  Google Scholar 

  8. Ji-Le L, Chen GH, Yuan CL (2013) Microstructure and electrical properties of rare earth doped ZnO-based varistor ceramics. Ceram Int 39:2231–2237. https://doi.org/10.1016/j.ceramint.2012.08.067

    Article  CAS  Google Scholar 

  9. Matsuoka M (1971) Nonohmic properties of zinc oxide ceramics. Jpn J Appl Phys 10:736–746

    Article  CAS  Google Scholar 

  10. Lin W, Xu Z, Wang Z et al (2020) Influence of Bi3Zn2Sb3O14 pre-synthesis phase on electrical properties of the ZnO–Bi2O3 based varistor ceramics. J Alloys Compd 834:155070. https://doi.org/10.1016/j.jallcom.2020.155070

    Article  CAS  Google Scholar 

  11. Nahm CW, Shin BC, Park JA, Yoo DH (2006) Effect of CoO on nonlinear electrical properties of praseodymia-based ZnO varistors. Mater Lett 60:164–167. https://doi.org/10.1016/j.matlet.2005.08.010

    Article  CAS  Google Scholar 

  12. Dosch RG, Tuttle BA, Brooks RA (1986) Chemical preparation and properties of high-field zinc oxide varistors. J Mater Res 1:90–99. https://doi.org/10.1557/JMR.1986.0090

    Article  CAS  Google Scholar 

  13. Kim J, Kimura T, Yamaguchi T (1984) Sintering of zinc oxide doped with antimony and bismuth oxide. J Am Ceram Soc 72:1390–1395

    Article  Google Scholar 

  14. Cho SG, Lee H, Kim HS (1997) Effect of chromium on the phase evolution and microstructure of ZnO doped with bismuth and antimony. J Mater Sci 32:4283–4287. https://doi.org/10.1023/A:1018607503494

    Article  CAS  Google Scholar 

  15. Wu ZH, Fang JH, Xu D et al (2010) Effect of SiO2 addition on the microstructure and electrical properties of ZnO-based varistors. Int J Miner Metall Mater 17:86–91. https://doi.org/10.1007/s12613-010-0115-0

    Article  CAS  Google Scholar 

  16. Sabri MGM, Azmi BZ, Rizwan Z et al (2011) Effect of temperature treatment on the optical characterization of ZnO–Bi2O3–TiO2 varistor ceramics. Int J Phys Sci 6:1388–1394. https://doi.org/10.5897/IJPS10.345

    Article  CAS  Google Scholar 

  17. Long W, Hu J, Liu J et al (2010) The effect of aluminum on electrical properties of ZnO varistors. J Am Ceram Soc 93:2441–2444. https://doi.org/10.1111/j.1551-2916.2010.03787.x

    Article  CAS  Google Scholar 

  18. Meng P, Gu S, Wang J et al (2018) Improving electrical properties of multiple dopant ZnO varistor by doping with indium and gallium. Ceram Int 44:1168–1171. https://doi.org/10.1016/j.ceramint.2017.07.173

    Article  CAS  Google Scholar 

  19. Cheng X, Lu Z, Liu X et al (2020) Improvement of surge current performances of ZnO varistor ceramics via C3N4-doping. J Eur Ceram Soc 40:2390–2395. https://doi.org/10.1016/j.jeurceramsoc.2020.01.067

    Article  CAS  Google Scholar 

  20. Harwig HA, Gerards AG (1978) Electrical properties of the α, β, γ, and δ phases of bismuth sesquioxide. J Solid State Chem 26:265–274. https://doi.org/10.1016/0022-4596(78)90161-5

    Article  CAS  Google Scholar 

  21. de la Rubia MA, Fernandez JF, Caballero AC (2005) Equilibrium phases in the Bi2O3-rich region of the ZnO–Bi2O3 system. J Eur Ceram Soc 25:2215–2217. https://doi.org/10.1016/j.jeurceramsoc.2005.03.033

    Article  CAS  Google Scholar 

  22. He J, Liu J, Hu J et al (2011) Non-uniform ageing behavior of individual grain boundaries in ZnO varistor ceramics. J Eur Ceram Soc 31:1451–1456. https://doi.org/10.1016/j.jeurceramsoc.2011.01.024

    Article  CAS  Google Scholar 

  23. Raidl N, Sartory B, Supancic P, Danzer R (2018) Modern methods for the microscopic characterization of ZnO varistor grain boundaries. Prakt Metallogr Metallogr 55:192–202. https://doi.org/10.3139/147.110511

    Article  Google Scholar 

  24. Van Kemenade JTC, Eijnthoven RK (1979) Direct determination of barrier voltage in ZnO varistors. J Appl Phys 50:938–941. https://doi.org/10.1063/1.326015

    Article  Google Scholar 

  25. Tanaka A, Mukae K (1999) ICTS measurements of single grain boundaries in ZnO:rare-earth varistor. J Electroceram 4:55–59. https://doi.org/10.1023/A:1009973704222

    Article  Google Scholar 

  26. Tao M, Ai B, Dorlanne O, Loubiere A (1987) Different “single grain junctions” within a ZnO varistor. J Appl Phys 61:1562–1567. https://doi.org/10.1063/1.338091

    Article  CAS  Google Scholar 

  27. Takemura T, Kobayahi M, Takada Y, Sato K (1986) Effects of bismuth sesquioxide on the characteristics of ZnO varistors. J Am Ceram Soc 69:430–436

    Article  CAS  Google Scholar 

  28. Mizutani T, Suzuoki Y, Ieda M (1990) Electrical properties of ZnO–Bi2O3 thin-film varistors. J Phys D Appl Phys 20:88–96

    Google Scholar 

  29. Wang Y, Peng Z, Wang Q et al (2017) High-performance varistors simply by hot-dipping zinc oxide thin films in Pr6O11: influence of temperature. Sci Rep 7:1–13. https://doi.org/10.1038/srep41994

    Article  CAS  Google Scholar 

  30. Eda K, Eguchi H, Okinaka H, Matsuoka M (1983) Thin-film bulk-type ZnO varistor fabricated by RF sputtering. Jpn J Appl Phys Part 1 Regul Pap Short Notes Rev Pap 22:202. https://doi.org/10.1143/jjap.22.202

    Article  CAS  Google Scholar 

  31. Chang K-M, Liu C-P, Tsai C-M (2019) Microstructure and electrical properties of zinc oxide thin film varistors prepared by RF sputtering. MRS Online Proc Library 786:347–352. https://doi.org/10.1557/PROC-786-E6.2

    Article  Google Scholar 

  32. Chiou B, Chen T, Duh J (1987) Electrical properties of ZnO–Bi2O3 thin-film varistors. J Phys D Appl Phys 20:511–517

    Article  Google Scholar 

  33. Wang Q, Peng Z, Wang Y, Fu X (2018) Highly nonlinear varistors fabricated by hot-dipping tin oxide thin films in Ta2O5 powder at different temperatures. Ceram Int 44:6894–6903. https://doi.org/10.1016/j.ceramint.2018.01.115

    Article  CAS  Google Scholar 

  34. Karanović L, Poleti D, Vasović D (1994) On the possibility of pyrochlore phase formation in zinc oxide varistor ceramic. Mater Lett 18:191–196. https://doi.org/10.1016/0167-577X(94)90229-1

    Article  Google Scholar 

  35. Wong J (1975) Microstructure and phase transformation in a highly non-Ohmic metal oxide varistor ceramic. J Appl Phys 46:1653–1659. https://doi.org/10.1063/1.321768

    Article  CAS  Google Scholar 

  36. Kang X, Floyd R, Lowum S et al (2019) Mechanism studies of hydrothermal cold sintering of zinc oxide at near room temperature. J Am Ceram Soc 102:4459–4469. https://doi.org/10.1111/jace.16340

    Article  CAS  Google Scholar 

  37. Kang X (2017) Hydrothermal cold sintering. North Carolina State University, Raleigh

    Google Scholar 

  38. Leite ER, Nobre MAL, Longo E, Varela JA (1996) Microstructural development of ZnO varistor during reactive liquid phase sintering. J Mater Sci 31:5391–5398. https://doi.org/10.1007/BF01159308

    Article  CAS  Google Scholar 

  39. Rahaman M, Tuttle B, Voigt J (1990) Low-temperature sintering of zinc oxide varistors. J Mater Sci 25:737–742. https://doi.org/10.1007/BF00714102

    Article  CAS  Google Scholar 

  40. Cheng LH, Zheng LY, Meng L et al (2012) Electrical properties of Al2O3-doped ZnO varistors prepared by sol–gel process for device miniaturization. Ceram Int 38:S457–S461. https://doi.org/10.1016/j.ceramint.2011.05.039

    Article  CAS  Google Scholar 

  41. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 32:751–767. https://doi.org/10.1023/A:1018927109487

    Article  Google Scholar 

  42. Wolfe RW, Newnham RE (1969) Rare earth bismuth titanates. J Electrochem Soc Solid State Sci 116:832–835

    CAS  Google Scholar 

  43. Harwig HA (1978) On the structure of bismuthsesquioxide. Zeitschrift fur Anorg und Allg Chemie 444:151–166. https://doi.org/10.1090/gsm/146/03

    Article  CAS  Google Scholar 

  44. Guha JP, Kunej Š, Suvorov D (2004) Phase equilibrium relations in the binary system Bi2O3–ZnO. J Mater Sci 39:911–918. https://doi.org/10.1023/B:JMSC.0000012921.62765.05

    Article  CAS  Google Scholar 

  45. Craig DC, Stephenson NC (1975) Structural studies of some body-centered cubic phases of mixed oxides involving Bi2O3: the structures of Bi25FeO40 and Bi38ZnO60. J Solid State Chem 15:1–8. https://doi.org/10.1016/0022-4596(75)90264-9

    Article  CAS  Google Scholar 

  46. Radaev SF, Simonov VI, Kargin YF (1992) Structural features of γ-phase Bi2O3 and its place in the sillenite family. Acta Crystallogr Sect B 48:604–609. https://doi.org/10.1107/S0108768192003847

    Article  Google Scholar 

  47. Radaev SF, Muradyan LA, Simonov VI (1991) Atomic structure and crystal chemistry of sillenites: Bi12(Bi3+0.50Fe3+0.50)O19.50 and Bi12(Bi3+0.67Zn2+0.33)O19.33. Acta Crystallogr Sect B 47:1–6. https://doi.org/10.1107/S0108768190007492

    Article  Google Scholar 

  48. Onreabroy W, Sirikulrat N, Brown AP et al (2006) Properties and intergranular phase analysis of a ZnO–CoO–Bi2O3 varistor. Solid State Ionics 177:411–420. https://doi.org/10.1016/j.ssi.2005.10.032

    Article  CAS  Google Scholar 

  49. Troemel M, Delicat U, Ducke A, Muench E (1991) Powder Diffraction File, No. 42-185 (*) (1992), ICDD Grant-in-Aid

  50. Royen P, Swars K (1957) Das system wismutoxyd-eisenoxyd im bereich von 0 bis 55 Mol% Eisenoxyd. Zeitschrift fur Anorg und Allg Chemie 69:779

    CAS  Google Scholar 

  51. Gattow G, Schroder H (1962) Die Kristallstruktur der Hochtemperaturmodifikation von Wismut(III)-oxid. Zeitschrift fur Anorg und Allg Chemie 318:176–189

    Article  CAS  Google Scholar 

  52. Levin EM, Roth RS (1964) Polymorphism of bismuth sesquioxide. I. Pure Bi2O3. J Res Natl Bur Stand Sect A Phys Chem 68A:189–195. https://doi.org/10.6028/jres.068a.019

    Article  Google Scholar 

  53. Westin G, Ekstrand Å, Nygren M et al (1994) Preparation of ZnO-based varistors by the sol–gel technique. J Mater Chem 4:615–621. https://doi.org/10.1039/JM9940400615

    Article  CAS  Google Scholar 

  54. Jan K (2017) Electrical and microstructural characterization of doped ZnO based multilayer varistors. Microelectron Int 34:116–120. https://doi.org/10.1108/MI-02-2017-0009

    Article  Google Scholar 

  55. Kulawik J, Szwagierczak D, Skwarek A (2017) Electrical and microstructural characterization of doped ZnO based multilayer varistors. Microelectron Int 34:116–120. https://doi.org/10.1108/MI-02-2017-0009

    Article  Google Scholar 

  56. Han J, Mantas PQ, Senos AMR (2002) Defect chemistry and electrical characteristics of undoped and Mn-doped ZnO. J Eur Ceram Soc 22:49–59

    Article  Google Scholar 

  57. Takada M, Sato Y, Yoshikado S (2009) Observation of Microstructure of Grain Boundaries of ZnO Varistors using Backscattered-electron. Mater Res Soc Symp Proc 1108:1–7

    Google Scholar 

  58. Imura M, Tanaka T, Homma M, Okada M (1994) Nonlinear current voltage characteristics of double layered ZnO rare earth sputtered films.pdf. Mater Trans JIM 35:730–734

    Article  CAS  Google Scholar 

  59. Chang KM, Liu CP, Tsai CM (2003) Microstructure and electrical properties of zinc oxide thin film varistors prepared by RF sputtering. Mater Res Soc Symp Proc 786:347–352. https://doi.org/10.1557/proc-786-e6.2

    Article  Google Scholar 

  60. Yano Y, Morooka H (1994) Fabrication of thin-film varistors using sputtering technique. J Ceram Soc Jpn 102:305–308

    Article  CAS  Google Scholar 

  61. Yano Y, Shirakawa Y, Morooka H (1992) Electrical properties of ZnO/PrCoOxide multilayered composistes. J Ceram Soc Jpn 100:547–550

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Richard Floyd and Sarah Lowum for assistance with the cold sintering of ceramic PLD targets, as well as Jennifer Grey for transmission electron microscopy measurements.

Funding

This work was supported by Sandia National Labs and the United State Department of Energy. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Ferri.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferri, K., Paisley, E.A., DiAntonio, C. et al. Investigation of phase evolution within ZnO–Bi2O3 varistors utilizing thin film prototypes. J Mater Sci 56, 12740–12752 (2021). https://doi.org/10.1007/s10853-021-06101-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06101-y

Navigation