Skip to main content
Log in

Fractal Convolution: A New Operation Between Functions

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, we define an internal binary operation between functions called fractal convolution that when applied to a pair of mappings generates a fractal function. This is done by means of a suitably defined iterated function system. We study in detail this operation in ℒp spaces and in sets of continuous functions in a way that is different from the previous work of the authors. We develop some properties of the operation and its associated sets. The lateral convolutions with the null function provide linear operators whose characteristics are explored. The last part of the article deals with the construction of convolved fractals bases and frames in Banach and Hilbert spaces of functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bajraktarević, Sur une équation fonctionelle. Glasnik Mat.-Fiz. Astr. Ser. II. 12 (1956), 201–205.

    MATH  Google Scholar 

  2. M. F. Barnsley, Fractal functions and interpolation. Constr. Approx. 2 (1986), 303–329.

    Article  MathSciNet  Google Scholar 

  3. S. Chen, The non-differentiability of a class of fractal interpolation functions. Acta Math. Sci. 19, No 4 (1999), 425–430.

    Article  MathSciNet  Google Scholar 

  4. X. Chen, Q. Guo, L. Xi, The range of an affine fractal interpolation function. Int. J. Nonlinear Sci. 3, No 3 (2007), 181–186.

    MathSciNet  MATH  Google Scholar 

  5. O. Christensen, Frame perturbations. Proc. Amer. Math. Soc. 123, No 4 (1995), 1217–1220.

    Article  MathSciNet  Google Scholar 

  6. O. Christensen, An Introduction to Frames and Riesz Bases. 2nd Birkhäuser, (2016).

    MATH  Google Scholar 

  7. J. Dugungji, Topology. Allyn and Bacon Inc., Boston, (1966).

    Google Scholar 

  8. A. Haar, Zur Theorie der orthogonalen Funktionensysteme. Math. Annalen. 69, No 3 (1910), 331–371.

    Article  MathSciNet  Google Scholar 

  9. D.P. Hardin, P.R. Massopust, The capacity for a class of fractal functions. Comm. Math. Phys. 105 (1986), 455–460.

    Article  MathSciNet  Google Scholar 

  10. J. Hutchinson, Fractals and self-similarity. Indiana Univ. Math. J. 30 (1981), 713–747.

    Article  MathSciNet  Google Scholar 

  11. Y.S. Liang, Fractal dimension of Riemann-Liouville fractional integral of 1-dimensional continuous functions. Fract. Calc. Appl. Anal. 21, No 6 (2018), 1651–1658; DOI: 10.1515/fca-2018-0087; https://www.degruyter.com/view/j/fca.2018.21.issue-6/issue-files/fca.2018.21.issue-6.xml.

    Article  MathSciNet  Google Scholar 

  12. B.B. Mandelbrot, J.V. Ness, Fractional Brownian motion, fractional noises and applications. SIAM Review. 10 (1968), 422–437.

    Article  MathSciNet  Google Scholar 

  13. B.B. Mandelbrot, Noises with an 1/f spectrum, a bridge between direct current and white noise. IEEE Trans. Information Theory. IT-13 (1967), 289–298.

    Article  Google Scholar 

  14. P.R. Massopust, Interpolation and Approximation with Splines and Fractals. Oxford University Press, New York, (2010).

    MATH  Google Scholar 

  15. P.R. Massopust, Fractal Functions, Fractal Surfaces, and Wavelets. 2nd Academic Press, (2016).

    MATH  Google Scholar 

  16. P.R. Massopust, Local fractal functions and function spaces. Springer Proc. in Mathematics & Statistics: Fractals, Wavelets, and their Applications. 92 (2014), 245–270.

    MathSciNet  MATH  Google Scholar 

  17. M.A. Navascués, Fractal bases of ℒp spaces. Fractals. 20, No 2 (2012), 141–148.

    Article  MathSciNet  Google Scholar 

  18. M.A. Navascués, Fractal functions of discontinuous approximation. J. of Basic and Applied Sci. (Math.). 10 (2014), 173–176.

    Article  Google Scholar 

  19. M.A. Navascués, A.K.B Chand, Fundamental sets of fractal functions. Acta Appl. Math. 100 (2008), 247–261.

    Article  MathSciNet  Google Scholar 

  20. R.R. Nigmatullin, W. Zhang, I. Gubaidullin, Accurate relationships between fractals and fractional integrals: new approaches and evaluations. Fract. Calc. Appl. Anal. 20, No 5 (2017), 1263–1280; DOI: 10.1515/fca-2017-0066; https://www.degruyter.com/view/j/fca.2017.20.issue-5/issue-files/fca.2017.20.issue-5.xml.

    Article  MathSciNet  Google Scholar 

  21. A.H. Read, The solution of a functional equation. Proc. Roy. Soc. Edinburgh Sect. A. 63 (1951–52), 336–345.

    MATH  Google Scholar 

  22. S. Rolewicz, Metric Linear Spaces. Kluwer Academic Publishers Group, Poland, (1985).

    MATH  Google Scholar 

  23. W. Rudin, Functional Analysis. 2nd McGraw Hill, Singapore, (1991).

    MATH  Google Scholar 

  24. I. Singer, Bases in Banach Spaces I. Springer Verlag, New York, (1970).

    Book  Google Scholar 

  25. H. Triebel, Theory of Function Spaces. Birkhäuser, Basel, (2010).

    MATH  Google Scholar 

  26. E. Zeidler, Nonlinear Analysis and its Applications, (I) Fixed Point Theorems. Springer Verlag, (1985).

    MATH  Google Scholar 

  27. S. Zhen, Hölder property of fractal interpolation functions. Approx. Theor. Appl. 8, No 4 (1992), 45–57.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María A. Navascués.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navascués, M.A., Massopust, P.R. Fractal Convolution: A New Operation Between Functions. FCAA 22, 619–643 (2019). https://doi.org/10.1515/fca-2019-0035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2019-0035

MSC 2010

Key Words and Phrases

Navigation