Skip to main content
Log in

Fractal Convolution on the Rectangle

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

The primary goal of this article is devoted to the study of fractal bases and fractal frames for \(L^2(I\times J)\), the collection of all square integrable functions on the rectangle \(I\times J\). The fractal function when recognized as an internal binary operation paved way for the construction of right and left partial fractal convolution operators on \(L^2(I)\), for any real compact interval I. The aforementioned operators defined on one dimensional space have been applied to obtain operators on the space \(L^2(I \times J)\) by the identification of \(L^2(I \times J)\) with the tensor product space \(L^2(I)\otimes L^2(J)\). In this paper, we establish properties of this bounded linear operator which eventually helps to prove that \(L^2(I \times J)\) admits Bessel sequences, Riesz bases and frames consisting of products of fractal (self-referential) functions in a nice way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnsley, M.F.: Fractal Functions and Interpolation. Constr. Approx. 2, 303–329 (1986)

    Article  MathSciNet  Google Scholar 

  2. Barnsley, M.F.: Fractals Everywhere. Academic Press, Boston (1988)

    MATH  Google Scholar 

  3. Barnsley, M.F., Hurd, L.P.: Fractal Image Compression. AK Peters Ltd, Wellesley (1993)

    MATH  Google Scholar 

  4. Chand, A.K.B., Kapoor, G.P.: Generalized cubic spline fractal interpolation functions. SIAM J. Numer. Anal. 44(2), 655–676 (2006)

    Article  MathSciNet  Google Scholar 

  5. Chand, A.K.B., Tyada, K.R., Navascués, M.A.: Cubic spline fractal solutions of two-point boundary value problems with a non-homogeneous nowhere differentiable term. J. Comput. Appl. Math. 404(113267), 1–13 (2022)

    MathSciNet  MATH  Google Scholar 

  6. Christensen, O.: Frame peturbations. Proc. Am. Math. Soc. 123(4), 1217–1220 (1995)

    Article  Google Scholar 

  7. Christensen, O.: Frames and Bases: An Introductory Course. Birkhauser, Boston (2008)

    Book  Google Scholar 

  8. Folland, G.B.: A Course in Abstract Harmonic Analysis, CRC Press: Boca Raton. FL, USA (1995)

    Google Scholar 

  9. Gowrisankar, A., Prasad, M.G.P.: Riemann-Liouville calculus on quadratic fractal interpolation function with variable scaling factors. J. Anal. 27(2), 347–363 (2019)

    Article  MathSciNet  Google Scholar 

  10. Jha, S., Chand, A.K.B., Navascués, M.A.: Approximation by shape preserving fractal functions with variable scalings. Calcolo 58, 1–24 (2021)

    Article  MathSciNet  Google Scholar 

  11. Khosravi, A., Asgari, M.S.: Frames and bases in tensor product of Hilbert spaces. Int. Math. J. 4, 527–537 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Kumagai, Y.: Fractal structure of financial high frequency data. Fractals 10(1), 13–18 (2002)

    Article  Google Scholar 

  13. Massopust, P.: Interpolation and Approximation with Splines and Fractals. Oxford University Press, New York (2010)

    MATH  Google Scholar 

  14. Mazel, D.S., Hayes, M.H.: Using iterated function systems to model discrete sequences, U. IEEE Trans. Signal Process. 40, 1724–1734 (1992)

    Article  Google Scholar 

  15. Navascués, M.A.: Fractal polynomial interpolation. Z. Anal. Anwend. 25(2), 401–418 (2005)

    Article  MathSciNet  Google Scholar 

  16. Navascués, M.A., Chand, A.K.B.: Fundamental sets of fractal functions. Acta Appl. Math. 100, 247–261 (2008)

    Article  MathSciNet  Google Scholar 

  17. Navascués, M.A., Massopust, P.: Fractal convolution: a new operation between functions. Fract. Calc. Appl. Anal. 22(3), 619–643 (2019)

    Article  MathSciNet  Google Scholar 

  18. Navascués, M.A., Mohapatra, R., Akhtar, M.N.: Fractal frames of functions on the rectangle. Fract. Fract. 5(2), 42 (2021)

    Article  Google Scholar 

  19. Navascués, M.A., Viswanathan, P., Mohapatra, R.: Convolved fractal bases and frames. Adv. Oper. Theory 42(6), 1–23 (2021)

    MathSciNet  MATH  Google Scholar 

  20. Pacurar, C., Necula, B.: An analysis of COVID-19 spread based on fractal interpolation and fractal dimension. Chaos Solitons Fract. 139, 110073 (2020)

    Article  MathSciNet  Google Scholar 

  21. Ruan, H., Xiao, J., Yang, B.: Bing Existence and box dimension of general recurrent fractal interpolation functions. Bull. Aust. Math. Soc. 103(2), 278–290 (2021)

    Article  MathSciNet  Google Scholar 

  22. Singer, I.: Bases in Banach Spaces I. Springer Verlag, New York (1970)

    Book  Google Scholar 

  23. Tetenov, A.V., Chand, A.K.B.: On weak separation property for affine fractal functions. Sib. Élektron. Mat. Izv. 12, 967–972 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Tyada, K.R., Chand, A.K.B., Sajid, M.: Shape preserving rational cubic trigonometric fractal interpolation functions. Math. Comput. Simul. 190, 866–891, 110073 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. B. Chand.

Additional information

Communicated by Palle Jorgensen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasupathi, R., Navascués, M.A. & Chand, A.K.B. Fractal Convolution on the Rectangle. Complex Anal. Oper. Theory 16, 52 (2022). https://doi.org/10.1007/s11785-022-01227-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-022-01227-6

Keywords

Mathematics Subject Classification

Navigation