Skip to main content
Log in

Convolved fractal bases and frames

  • Original Paper
  • Published:
Advances in Operator Theory Aims and scope Submit manuscript

Abstract

Based on the theory of fractal functions, in previous papers, the first author introduced fractal versions of functions in \({\mathcal {L}}^p\)-spaces, associated fractal operator and some related notions. More recently, it has been realized that the fractalization of a Lebesgue integrable function can be viewed as an internal binary operation, termed fractal convolution, of the germ function and a parameter map. In the current note, we continue to study this fractal convolution with a different viewpoint in mind. In particular, we consider both left and right partial fractal convolution operators on \({\mathcal {L}}^p\)-spaces. As an application, we obtain bases and frames consisting of fractal functions by exploring fractal convolutions and their intriguing links with the perturbation theory of Schauder bases and frames. Thus, the theory of fractal functions and theory of bases and frames seem to come together very nicely via fractal convolution. Also established along the way are results involving bases and frames obtained by using partial fractal convolutions with the null function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnsley, M.F., Demko, S.: Iterated function systems and the global construction of fractals. Proc. R. Soc. Lond. Ser. A 399, 243–275 (1985)

    Article  MathSciNet  Google Scholar 

  2. Barnsley, M.F.: Fractal functions and interpolation. Constr. Approx. 2, 303–329 (1986)

    Article  MathSciNet  Google Scholar 

  3. Barnsley, M.F.: Fractals Everywhere. Academic Press Inc., New York (1988)

    MATH  Google Scholar 

  4. Casazza, P.G., Christensen, O.: Perturbation of operators and applications to frame theory. J. Fourier Anal. Appl. 3(5), 543–557 (1997)

    Article  MathSciNet  Google Scholar 

  5. Casazza, P.G., Freeman, D., Lynch, R.G.: Weaving Schauder frames. J. Approx. Theory 211, 42–60 (2016)

    Article  MathSciNet  Google Scholar 

  6. Christensen, O.: Frame perturbations. Proc. Am. Math. Soc. 123(4), 1217–1220 (1995)

    Article  MathSciNet  Google Scholar 

  7. Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2002)

    MATH  Google Scholar 

  8. Heil, C.E.: A Basis Theory Primer. Birkhäuser, New York (2011)

    Book  Google Scholar 

  9. Hutchinson, J.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    Article  MathSciNet  Google Scholar 

  10. Mandelbrot, B.: The Fractal Geometry of Nature. W.H. Freeman, New York (1983)

    Book  Google Scholar 

  11. Massopust, P.: Fractal Functions, Fractal Surfaces, and Wavelets, 2nd edn. Academic Press, New York (2016)

    MATH  Google Scholar 

  12. Navascués, M.A.: Fractal polynomial interpolation. Z. Anal. Anwend. 25(2), 401–418 (2005)

    Article  MathSciNet  Google Scholar 

  13. Navascués, M.A.: Fractal trigonometric approximation. Electron. Trans. Numer. Anal. 20, 64–74 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Navascués, M.A.: Fractal approximation. Complex Anal. Oper. Theory 4(4), 953–974 (2010)

    Article  MathSciNet  Google Scholar 

  15. Navascués, M.A.: Fractal bases of \(L_p\) spaces. Fractals 20(2), 141–148 (2012)

    Article  MathSciNet  Google Scholar 

  16. Navascués, M.A.: Fractal functions of discontinuous approximation. J. Basic Appl. Sci. (Math.) 10, 173–176 (2014)

    Article  Google Scholar 

  17. Navascués, M.A., Massopust, P.: Fractal convolution: a new operation between functions. Fract. Calc. Appl. Anal. 22(3), 619–643 (2019)

    Article  MathSciNet  Google Scholar 

  18. Poumai, K.T., Rathore, G.S., Bhati, S.: A note on frames in Banach spaces. Int. J. Comp. Appl. Math. 12(2), 631–638 (2017)

    Google Scholar 

  19. Thim, J.: Continuous nowhere differentiable functions. Masters Thesis, Lulea (2003)

  20. Viswanathan, P., Chand, A.K.B.: Fractal rational functions and their approximation properties. J. Approx. Theory 185, 31–50 (2014)

    Article  MathSciNet  Google Scholar 

  21. Viswanathan, P., Navascués, M.A., Chand, A.K.B.: Associated fractal functions in \({\cal{L}}^p\) spaces and in one-sided uniform approximation. J. Math. Anal. Appl. 433, 862–876 (2016)

    Article  MathSciNet  Google Scholar 

  22. Viswanathan, P., Navascués, M.A.: A fractal operator on some standard spaces of functions. Proc. Edinburgh Math. Soc. 60, 771–786 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Viswanathan.

Additional information

Communicated by Christopher Heil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navascués, M.A., Viswanathan, P. & Mohapatra, R. Convolved fractal bases and frames. Adv. Oper. Theory 6, 42 (2021). https://doi.org/10.1007/s43036-021-00138-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43036-021-00138-1

Keywords

Mathematics Subject Classification

Navigation