Skip to main content
Log in

Fundamental Sets of Fractal Functions

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Fractal interpolants constructed through iterated function systems prove more general than classical interpolants. In this paper, we assign a family of fractal functions to several classes of real mappings like, for instance, maps defined on sets that are not intervals, maps integrable but not continuous and may be defined on unbounded domains. In particular, based on fractal interpolation functions, we construct fractal Müntz polynomials that successfully generalize classical Müntz polynomials. The parameters of the fractal Müntz system enable the control and modification of the properties of original functions. Furthermore, we deduce fractal versions of classical Müntz theorems. In this way, the fractal methodology generalizes the fundamental sets of the classical approximation theory and we construct complete systems of fractal functions in spaces of continuous and p-integrable mappings on bounded domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnsley, M.F.: Fractal Functions and Interpolation. Constr. Approx. 2, 303–329 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barnsley, M.F., Hurd, L.P.: Fractal Image Compression. AK Peters Ltd, Wellesley (1993)

    MATH  Google Scholar 

  3. Bernstein, S.N.: Collected Works: vol. 1. Constructive Theory of Functions (1905–1930). Atomic Energy Commission, Speingfield (1958); English Translation

    Google Scholar 

  4. Borwein, P., Erdélyi, T.: Generalizations of Müntz’s theorem via a Remez-type inequality for Müntz spaces. J. Am. Math. Soc. 10(2), 327–349 (1997)

    Article  MATH  Google Scholar 

  5. Borwein, P., Erdélyi, T.: The full Müntz Theorem in \(\mathcal{C}[0,1]\) and L 1[0,1]. J. Lond. Math. Soc. 54, 102–110 (1996)

    MATH  Google Scholar 

  6. Chand, A.K.B., Kapoor, G.P.: Generalized cubic spline fractal interpolation functions. SIAM J. Numer. Anal. 44(2), 655–676 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cheney, E.W.: Introduction to Approximation Theory. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  8. Clarkson, J.A., Erdös, P.: Approximation by polynomials. Duke Math. J. 10, 5–11 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  9. Davis, P.J.: Interpolation and Approximation. Dover, New York (1977)

    Google Scholar 

  10. Dudley, R.M.: Real Analysis and Probability. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  11. Hwang, J.S.: A note on Bernstein and Müntz–Szasz theorems with applications to the order statistics. Ann. Inst. Stat. Math. 30(1), 167–176 (1978)

    Article  MATH  Google Scholar 

  12. Jameson, G.J.O.: Topology and Normed Spaces. Chapman and Hall, London (1974)

    MATH  Google Scholar 

  13. Kumagai, Y.: Fractal structure of financial high frequency data. Fractals 10(1), 13–18 (2002)

    Article  MathSciNet  Google Scholar 

  14. Lebedev, L.P., Vorovich, I.I., Gladwell, G.M.L.: Functional Analysis, 2nd edn. Kluwer Academic, Dordrecht (2002)

    MATH  Google Scholar 

  15. Mazel, D.S., Hayes, M.H.: Using iterated function systems to model discrete sequences. IEEE Trans. Signal Process. 40, 1724–1734 (1992)

    Article  MATH  Google Scholar 

  16. Müntz, C.: Über den Approximationsatz von Weierstrass, H.A. Schwartz Festschrift. Berlin (1914)

  17. Navascués, M.A.: Fractal polynomial interpolation. Z. Anal. Anwend. 25(2), 401–418 (2005)

    Article  Google Scholar 

  18. Navascués, M.A.: Fractal functions on the sphere. J. Comput. Anal. Appl. 9(3), 257–270 (2007)

    MATH  MathSciNet  Google Scholar 

  19. Navascués, M.A., Sebastián, M.V.: Smooth fractal interpolation. J. Inequal. Appl. 2006, 1–20 (2006)

    Article  Google Scholar 

  20. Navascués, M.A., Sebastián, M.V.: Fitting curves by fractal interpolation: an application to the quantification of cognitive brain processes. In: Novak, M.M. (ed.) Thinking in Patterns: Fractals and Related Phenomena in Nature, pp. 143–154. World Scientific, Singapore (2004)

    Chapter  Google Scholar 

  21. Ryu, H.K.: Choice of representation system for economic analysis. Appl. Econ. Lett. 10, 863–866 (2003)

    Article  Google Scholar 

  22. Schwartz, L.: Etude des Sommes d’Exponentielles. Hermann, Paris (1959)

    MATH  Google Scholar 

  23. Szász, O.: Über die Approximation steliger Funktionen durch lineare Aggregate von Potenzen. Math. Ann. 77, 482–496 (1916)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Navascués.

Additional information

This work is supported by the project No: SB 2005-0199, Spain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navascués, M.A., Chand, A.K.B. Fundamental Sets of Fractal Functions. Acta Appl Math 100, 247–261 (2008). https://doi.org/10.1007/s10440-007-9182-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-007-9182-2

Keywords

Mathematics Subject Classification (2000)

Navigation