Skip to main content
Log in

Dissection of the interaction between human holo-transferrin and ciprofloxacin in the presence of silver nanoparticles: spectroscopic approaches

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The binding of ciprofloxacin (CIP) to human holo-transferrin (HTF) in the presence of silver nanoparticles (AgNPs) has been investigated by fluorescence quenching and circular dichroism (CD) techniques as well as resonance light scattering under physiological conditions. It was determined that the intrinsic fluorescence of HTF was quenched by CIP in the presence of AgNPs through static quenching, thus confirming that a CIP-HTF complex was formed in both the binary and ternary systems. However, the analysis of HTF fluorescence quenching in these binary and ternary systems indicated that the AgNPs were affected upon complex formation between CIP and HTF and that the binding affinity between them became more substantial when the AgNPs coexisted with the drug. Fluorescence quenching proved that HTF had one class of binding sites for CIP in both binary and ternary systems. CD spectra indicated that the secondary structure of HTF changed when increasing the CIP concentration and during the simultaneous presence of CIP and AgNPs, which led to decreased contents of α-helix and β-sheet structures in HTF, inducing destabilization of the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AgNPs:

silver nanoparticles

CD:

circular dichroism

CIP:

ciprofloxacin

HTF:

human holo-transferrin

REES:

red edge excitation shift

RLS:

resonance light scattering.

References

  • Anglister J. & Steinberg I. 1983. Resonance Rayleigh scattering of cyanine dyes in solution. J. Chem. Phys. 78: 5358–5368.

    Article  CAS  Google Scholar 

  • Breilh D., Saux M.C., Maire P., Vergnaud J.M. & Jelliffe R.W. 2001. Mixed pharmacokinetic population study and diffusion model to describe ciprofloxacin lung concentrations. Comput. Biol. Med. 31: 147–155.

    Article  CAS  PubMed  Google Scholar 

  • Cai W., Fan Y., Jiang Z. & Yao J. 2010. A highly sensitive and selective resonance scattering spectral assay for potassium ion based on aptamer and nanosilver aggregation reactions. Talanta 81: 1810–1815.

    Article  CAS  PubMed  Google Scholar 

  • Chen X. & Schluesener H. 2008. Nanosilver: a nanoproduct in medical application. Toxicol. Lett. 176: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Chen Z., Liu G., Chen M., Xu B., Peng Y., Chen M. & Wu M. 2009. Screen anticancer drug in vitro using resonance light scattering technique. Talanta 77: 1365–1369.

    Article  CAS  PubMed  Google Scholar 

  • Choi O., Yu C.P., Fernandez G.E. & Hu Z. 2010. Interactions of nanosilver with Escherichia, coli cells in planktonic and biofilm cultures. Water. Res. 44: 6095–6103.

    Article  CAS  PubMed  Google Scholar 

  • Demchenko A., & Ladokhin A. 1988. Red-edge-excitation fluorescence spectroscopy of indole and tryptophan. Eur. Biophys. J. 15: 369–379.

    Article  CAS  PubMed  Google Scholar 

  • Ding F., Liu W., Li N., Zhang L. & Sun Y. 2010. Complex of nicosulfuron with human serum albumin: a biophysical study. J. Mol. Struct. 975: 256–264.

    Article  CAS  Google Scholar 

  • Du H., Xiang J., Zhang Y. & Tang Y. 2007. A spectroscopic and molecular modeling study of sinomenine binding to transferrin. Bioorg. Med. Chem. Lett. 17: 1701–1704.

    Article  CAS  PubMed  Google Scholar 

  • Ge F., Chen C, Liu D., Han B., Xiong X. & Zhao S. 2010. Study on the interaction between the asinesin and human serum albumin by fluorescence spectroscopy. J. Lumin. 130: 168–173.

    Article  CAS  Google Scholar 

  • Gonçalves S., Santos N.C., Martins-Silva J. & Saldanha C. 2007. Fluorescence spectroscopy evaluation of fibrinogen-β-estradiol binding. J. Photochem. Photobiol. B Biol. 86: 170–176.

    Article  CAS  Google Scholar 

  • Harris W.R., Cafferty A.M., Trankler K., Maxwell A. & MacGil-livray R.T. 1999. Thermodynamic studies on anion binding to apotransferrin and to recombinant transferrin N-lobe half molecules. Biochim. Biophys. Acta 1430: 269–280.

    Article  CAS  PubMed  Google Scholar 

  • He Q.Y., Mason A.B., Tarn B.M., MacGillivray R.T. & Wood-worth R.C. 1999. Dual role of Lys206—Lys296 interaction in human transferrin N-lobe: iron-release trigger and anion-binding site. Biochemistry 38: 9704–9711.

    Article  CAS  PubMed  Google Scholar 

  • He Y., Wang Y., Tang L., Liu H., Chen W., Zheng Z. & Zou G. 2008. Binding of puerarin to human serum albumin: a spectroscopic analysis and molecular docking. J. Fluoresc. 18: 433–442.

    Article  PubMed  CAS  Google Scholar 

  • Jones S.A., Bowler P.G., Walker M. & Parsons D. 2004. Controlling wound bioburden with a novel silver-containing Hy-drofiber dressing. Wound Repair Regen. 12: 288–294.

    Article  PubMed  Google Scholar 

  • Kelly S.M., Jess T.J. & Price N.C. 2005. How to study proteins by circular dichroism. Biochim. Biophys. Acta 1751: 119–139.

    Article  CAS  PubMed  Google Scholar 

  • Lewinski N., Colvin V. & Drezek R. 2008. Cytotoxicity of nanoparticles. Small 4: 26–49.

    Article  CAS  PubMed  Google Scholar 

  • Lewis L.N. 1993. Chemical catalysis by colloids and clusters. Chem. Rev. 93: 2693–2730.

    Article  CAS  Google Scholar 

  • Li S., Yao D., Bian H., Chen Z., Yu J., Yu Q. & Liang H. 2011. Interaction between plumbagin and human serum albumin by fluorescence spectroscopy. J. Solution Chem. 40: 709–718.

    Article  CAS  Google Scholar 

  • Li Y., Wu Y. & Ong B. S. 2005. Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics. J. Am. Chem. Soc. 127: 3266–3267.

    Article  CAS  PubMed  Google Scholar 

  • Lok C.N., Ho C.M., Chen R., He Q.Y., Yu W.Y., Sun H. & Che C.M. 2007. Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. 12: 527–534.

    Article  CAS  PubMed  Google Scholar 

  • Long D., Wu G. & Chen S. 2007. Preparation of oligochitosan stabilized silver nanoparticles by gamma irradiation. Radiât. Phys. Chem. 76: 1126–1131.

    Article  CAS  Google Scholar 

  • Mallick K., Witcomb M. & Scurrell M. 2004. Polymer stabilized silver nanoparticles: a photochemical synthesis route. J. Mater. Sci. 39: 4459–4463.

    Article  CAS  Google Scholar 

  • Morones J.R., Elechiguerra J.L., Camacho A., Holt K., Kouri J.B., Ramirez J.T. & Yacaman M.J. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16: 23–46.

    Article  CAS  Google Scholar 

  • Mozo-Villarias A. 2002. Second derivative fluorescence spectroscopy of tryptophan in proteins. J. Biochem. Biophys. Methods 50: 163–178.

    Article  CAS  PubMed  Google Scholar 

  • Scholes G.D. 2003. Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54: 57–87.

    Article  CAS  PubMed  Google Scholar 

  • Seedher N. & Agarwal P. 2010. Complexation of fluoroquinolone antibiotics with human serum albumin: a fluorescence quenching study. J Lumin. 130: 1841–1848.

    Article  CAS  Google Scholar 

  • Silver S. & Phung L.T. 1996. Bacterial heavy metal resistance: new surprises. Annu. Rev. Microbiol. 50: 753–789.

    Article  CAS  PubMed  Google Scholar 

  • Smith T. 2005. Human serum transferrin cobalt complex: stability and cellular uptake of cobalt. Bioorg. Med. Chem. 13: 4576–4579.

    Article  CAS  PubMed  Google Scholar 

  • Sun H., Li H. & Sadler P.J. 1999. Transferrin as a metal ion mediator. Chem. Rev. 99: 2817–2842.

    Article  CAS  PubMed  Google Scholar 

  • Sun H.H., Zhang J., Zhang Y.Z., Yang L.Y., Yuan L.L. & Liu Y. 2012. Interaction of human serum albumin with 10-hydroxycamptothecin: spectroscopic and molecular modeling studies. Mol. Biol. Rep. 39: 5115–5123.

    Article  CAS  PubMed  Google Scholar 

  • Sun W., Du Y., Chen J., Kou J. & Yu B. 2009. Interaction between titanium dioxide nanoparticles and human serum albumin revealed by fluorescence spectroscopy in the absence of photoactivation. J. Lumin. 129: 778–783.

    Article  CAS  Google Scholar 

  • Sun X., Sun H., Ge R., Richter M., Woodworth R.C, Mason A.B. & He Q.Y. 2004. The low pKa value of iron-binding ligand Tyrl88 and its implication in iron release and anion binding of human transferrin. FEBS Lett. 573: 181–185.

    Article  CAS  PubMed  Google Scholar 

  • Wang J., Liu Z., Liu J., Liu S. & Shen W. 2008. Study on the interaction between fluoroquinolones and erythrosine by absorption, fluorescence and resonance Rayleigh scattering spectra and their application. Spectrochim. Acta A Mol. Biomol. Spectrosc. 69: 956–963.

    Article  PubMed  CAS  Google Scholar 

  • Wang T., Xiang B.R., Li Y., Chen C.Y., Zhou X.H., Wang Z.M. & Fang H.S. 2009. Studies on the binding of a carditionic agent to human serum albumin by two-dimensional correlation fluorescence spectroscopy and molecular modeling. J. Mol. Struct. 921: 188–198.

    Article  CAS  Google Scholar 

  • Wang T., Zhao Z., Wei B., Zhang L. & Ji L. 2010. Spectroscopic investigations on the binding of dibazol to bovine serum albumin. J. Mol. Struct. 970: 128–133.

    Article  CAS  Google Scholar 

  • Yang B., Feng J., Li Y., Gao F., Zhao Y. & Wang J. 2003. Spectral studies on aluminum ion binding to the ligands with phenolic group(s): implications for the differences between N- and C-terminal binding sites of human serum apotransferrin. J. Inorg. Biochem. 96: 416–424.

    Article  CAS  PubMed  Google Scholar 

  • Yu X., Liu R., Yi R., Yang F., Huang H., Chen J. & Yi P. 2011. Study of the interaction between N-confused porphyrin and bovine serum albumin by fluorescence spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 78: 1329–1335.

    Article  PubMed  CAS  Google Scholar 

  • Yuan J.L., Liu Z.G., Hu Z. & Zou G.L. 2007. Study on interaction between apigenin and human serum albumin by spectroscopy and molecular modeling. J. Photochem. Photobiol. A Chem. 191: 104–113.

    Article  CAS  Google Scholar 

  • Zhang J., Sun H.H., Zhang Y.Z., Yang L.Y., Dai J. & Liu Y. 2012. Interaction of human serum albumin with indomethacin: spectroscopic and molecular modeling studies. J. Solution Chem. 41: 422–435.

    Article  CAS  Google Scholar 

  • Zhang L., Szeto K.Y., Wong W.B., Loh T.T., Sadler P.J. & Sun H. 2001. Interactions of bismuth with human lactoferrin and recognition of the BiIII-Iactoferrin complex by intestinal cells. Biochemistry 40: 13281–13287.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L.N., Wu F.Y. & Liu A.H. 2011. Study of the interaction between 2,5-di-[2-(4-hydroxy-phenyl) ethylene]-terephthalo-nitril and bovine serum albumin by fluorescence spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 79: 97–103.

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y.Y., Mandai R. & Li X.F. 2005. Intact human holotransferrin interaction with oxaliplatin. Rapid Commun. Mass Spectrom. 19: 1956–1962.

    Article  CAS  PubMed  Google Scholar 

  • Zakelj S., Sturm K. & Kristl A. 2006. Ciprofloxacin permeability and its active secretion through rat small intestine in vitro. Int. J. Pharm. 313: 175–180.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamshidkhan Chamani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koohzad, F., Beigoli, S., JahanShah-Talab, M. et al. Dissection of the interaction between human holo-transferrin and ciprofloxacin in the presence of silver nanoparticles: spectroscopic approaches. Biologia 72, 569–580 (2017). https://doi.org/10.1515/biolog-2017-0066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2017-0066

Key words

Navigation