Skip to main content
Log in

A novel GH13 subfamily of α-amylases with a pair of tryptophans in the helix α3 of the catalytic TIM-barrel, the LPDlx signature in the conserved sequence region V and a conserved aromatic motif at the C-terminus

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The α-amylase enzyme specificity has been classified in the Carbohydrate-Active enZyme (CAZy) database into the families GH13, GH57, GH119 and eventually also GH126. α-Amylase is a glycoside hydrolase (GH) that catalyses in an endo-fashion the hydrolysis of the α-1,4-glucosidic linkages in starch and related α-glucans employing the retaining reaction mechanism. The family GH13 is the main a-amylase family with more than 28,000 members and 30 different specificities. The entire family GH13 has already been divided into 40 subfamilies; the a-amylase enzyme specificity being found in the subfamilies GH13_1, 5, 6, 7, 15, 19, 24, 27, 28, 32, 36 and 37. The present in silico study delivers a proposal to create a novel GH13 subfamily with the specificity of a-amylase. The proposal is based on a detailed bioinformatics analysis consisting of sequence, structural and evolutionary comparison of experimentally characterized a-amylases from, e.g., Bacillus aquimaris, Anoxybacillus sp. SK3-4 and DT3-1 and Geobacillus thermoleovorans, and hypothetical proteins, accompanied by a-amylases from well-established GH13 subfamilies and by closely related amylolytic enzymes (mainly from the subfamily GH13_31). Three sequence-structural features can be ascribed to the members of the newly proposed GH13 subfamily: (i) the pair of adjacent tryptophan residues positioned between the CSR-V and CSR-II in the helix a3 of the catalytic TIM-barrel; (ii) the sequence LPDlx in their CSR-V; and (iii) a ~30-residue long C-terminal region with a motif of five conserved aromatic residues. From the evolutionary point of view, the novel GH13 a-amylase subfamily is most closely related to fungal and yeast a-amylases classified in the subfamily GH13_1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BaqA:

Bacillus aquimaris a-amylase

CAZy:

Carbohydrate-Active enZymes

CSR:

conserved sequence region

GH:

glycoside hydrolase

PDB:

Protein Data Bank

References

  • Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Ballschmiter M., Armbrecht M., Ivanova K., Antranikian G. & Liebl W. 2005. AmyA, an α-amylase with β-cyclodextrin-forming activity, and AmyB from the thermoalkaliphilic organism Anaerobranca gottschalkii: two α-amylases adapted to their different cellular localizations. Appl. Environ. Microbiol. 71: 3709–3715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benson D.A., Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2014. GenBank. Nucleic Acids Res 42: D32–D37.

    Article  CAS  PubMed  Google Scholar 

  • Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N. & Bourne P.E. 2000. The Protein Data Bank. Nucleic Acids Res. 28: 235–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blesak K. & Janecek S. 2012. Sequence fingerprints of enzyme specificities from the glycoside hydrolase family GH57. Ex-tremophiles 16: 497–506.

    CAS  Google Scholar 

  • Blesak K. & Janecek S. 2013. Two potentially novel amylolytic enzyme specificities in the prokaryotic glycoside hydrolase α-amylase family GH57. Microbiology 159: 2584–2593.

    Article  CAS  PubMed  Google Scholar 

  • Cantarel B.L., Coutinho P.M., Rancurel C., Bernard T., Lombard V. & Henrissat B. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 37: D233–D238.

    CAS  PubMed  Google Scholar 

  • Carvalho C.C., Phan N.N., Chen Y. & Reilly P.J. 2015. Carbohydrate-binding module tribes. Biopolymers 103: 203–214.

    Article  CAS  PubMed  Google Scholar 

  • Chai Y.Y., Rahman R.N., Illias R.M. & Goh K.M. 2012. Cloning and characterization of two new thermostable and alkalitolerant α-amylases from the Anoxybacillus species that produce high levels of maltose. J. Ind. Microbiol. Biotechnol. 39: 731–741.

    Article  CAS  PubMed  Google Scholar 

  • Crooks G.E., Hon G., Chandonia J.M. & Brenner S.E. 2004. We-bLogo: a sequence logo generator. Genome Res. 14: 1188–1190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Lage J.L., Binder M., Hua-Van A., Janecek S. & Casane D. 2013. Gene make-up: rapid and massive intron gains after horizontal transfer of a bacterial α-amylase gene to Basid-iomycetes. BMC Evolutionary Biology 13: 40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Da Lage J.L., Danchin E.G. & Casane D. 2007. Where do animal α-amylases come from? An interkingdom trip. FEBS Lett. 581: 3927–3935.

    Article  PubMed  CAS  Google Scholar 

  • Da Lage J.L., Feller G. & Janecek S. 2004. Horizontal gene transfer from Eukarya to bacteria and domain shuffling: the α-amylase model. Cell. Mol. Life Sci. 61: 97–109.

    Article  PubMed  CAS  Google Scholar 

  • D’Amico S., Gerday C. & Feller G. 2000. Structural similarities and evolutionary relationships in chloride-dependent α-amylases. Gene 253: 95–105.

    Article  PubMed  Google Scholar 

  • Felsenstein J. 1985. Confidence-limits on phylogenies - an approach using the bootstrap. Evolution 39: 783–791.

    Article  PubMed  Google Scholar 

  • Ficko-Blean E., Stuart C.P. & Boraston A.B. 2011. Structural analysis of CPF_2247, a novel α-amylase from Clostridium perfringens. Proteins 79: 2771–2777.

    Article  CAS  PubMed  Google Scholar 

  • Finore I., Kasavi C., Poli A., Romano I., Toksoy Oner E., Kirdar B., Dipasquale L., Nicolaus B. & Lama L. 2011. Purification, biochemical characterization and gene sequencing of a thermostable raw starch digesting α-amylase from Geobacil-lus thermoleovorans subsp. stromboliensis subsp. nov. World J. Microbiol. Biotechnol. 27: 2425–2433.

    Article  CAS  Google Scholar 

  • Fritzsche H.B., Schwede T. & Schulz G.E. 2003. Covalent and three-dimensional structure of the cyclodextrinase from Flavobacterium sp. no. 92. Eur. J. Biochem. 270: 2332–2341.

    Article  CAS  PubMed  Google Scholar 

  • Henrissat B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hondoh H., Saburi W., Mori H., Okuyama M., Nakada T., Matsuura Y. & Kimura A. 2008. Substrate recognition mechanism of α-1,6-glucosidic linkage hydrolyzing enzyme, dextran glucosidase from Streptococcus mutans. J. Mol. Biol. 378: 913–922.

    Article  PubMed  CAS  Google Scholar 

  • Hostinova E., Janecek S. & Gasperik J. 2010. Gene sequence, bioinformatics and enzymatic characterization of α-amylase from Saccharomycopsis fibuligeraKZ. Protein J. 29: 355–364.

    Article  CAS  PubMed  Google Scholar 

  • Janecek S. 1994. Sequence similarities and evolutionary relationships of microbial, plant and animal α-amylases. Eur. J. Biochem. 224: 519–524.

    Article  CAS  PubMed  Google Scholar 

  • Janecek S. 2002. How many conserved sequence regions are there in the α-amylase family? Biologia 57(Suppl 11): 29–41.

    CAS  Google Scholar 

  • Janecek S. & Kuchtova A. 2012. In silico identification of catalytic residues and domain fold of the family GH119 sharing the catalytic machinery with the α-amylase family GH57. FEBS Lett. 586: 3360–3366.

    Article  CAS  PubMed  Google Scholar 

  • Janecek S., Svensson B. & MacGregor E.A. 2011. Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals. Enzyme Microb. Technol. 49: 429–440.

    Article  CAS  PubMed  Google Scholar 

  • Janecek S., Svensson B. & MacGregor E.A. 2014. α-Amylase -an enzyme specificity found in various families of glycoside hydrolases. Cell. Mol. Life Sci. 71: 1149–1170.

    Article  CAS  PubMed  Google Scholar 

  • Kelley L.A. & Sternberg M.J.E. 2009. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4: 363–371.

    Article  CAS  PubMed  Google Scholar 

  • Kelly R.M., Dijkhuizen L. & Leemhuis H. 2009. Starch and α-glucan acting enzymes, modulating their properties by directed evolution. J. Biotechnol. 140: 184–193.

    Article  CAS  PubMed  Google Scholar 

  • Kuriki T. & Imanaka T. 1999. The concept of the α-amylase family: structural similarity and common catalytic mechanism. J. Biosci. Bioeng. 87: 557–565.

    Article  CAS  PubMed  Google Scholar 

  • Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J. & Higgins D.G. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.

    Article  CAS  PubMed  Google Scholar 

  • Lei Y., Peng H., Wang Y., Liu Y., Han F., Xiao Y. & Gao Y. 2012. Preferential and rapid degradation of raw rice starch by an α-amylase of glycoside hydrolase subfamily GH13_37. Appl. Microbiol. Biotechnol. 94: 1577–1584.

    Article  CAS  PubMed  Google Scholar 

  • Letunic I. & Bork P. 2007. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23: 127–128.

    Article  CAS  PubMed  Google Scholar 

  • Leveque E., Janecek S., Belarbi A. & Haye B. 2000. Thermophilic archaeal amylolytic enzymes. Enzyme Microb. Technol. 26: 2–13.

    Article  Google Scholar 

  • Li C., Du M., Cheng B., Wang L., Liu X., Ma C., Yang C. & Xu P. 2014. Close relationship of a novel Flavobacteriaceae α-amylase with archaeal α-amylases and good potentials for industrial applications. Biotechnol. Biofuels 7: 18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Y., Lei Y., Zhang X., Gao Y., Xiao Y. & Peng H. 2012. Identification and phylogenetic characterization of a new subfamily of α-amylase enzymes from marine microorganisms. Mar. Biotechnol. (NY) 14: 253–260.

    Article  CAS  Google Scholar 

  • Lombard V., Golaconda Ramulu H., Drula E., Coutinho P.M. & Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42: D490–D495.

    Article  CAS  PubMed  Google Scholar 

  • Long C.M., Virolle M.J., Chang S.Y., Chang S. & Bibb M.J. 1987. α-Amylase gene of Streptomyces limosus: nucleotide sequence, expression motifs, and amino acid sequence homology to mammalian and invertebrate α-amylases. J. Bacteriol. 169: 5745–5754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacGregor E.A., Janecek S. & Svensson B. 2001. Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim. Biophys. Acta 1546: 1–20.

    Article  CAS  PubMed  Google Scholar 

  • Majzlova K., Pukajova Z. & Janecek S. 2013. Tracing the evolution of the α-amylase subfamily GH13_36 covering the amylolytic enzymes intermediate between oligo-1,6-glucosidases and neopullulanases. Carbohydr. Res. 367: 48–57.

    Article  CAS  PubMed  Google Scholar 

  • Matsuura Y., Kusunoki M., Harada W. & Kakudo M. 1984. Structure and possible catalytic residues of Takaamylase A. J. Biochem. 95: 697–702.

    Article  CAS  PubMed  Google Scholar 

  • Mehta D. & Satyanarayana T. 2014. Domain C of thermostable α-amylase of Geobacillus thermoleovorans mediates raw starch adsorption. Appl. Microbiol. Biotechnol. 98: 4503–4519.

    Article  CAS  PubMed  Google Scholar 

  • Mok S.C., Teh A.H., Saito J.A., Najimudin N. & Alam M. 2013. Crystal structure of a compact α-amylase from Geobacillus thermoleovorans. Enzyme Microb. Technol. 53: 46–54.

    Article  CAS  PubMed  Google Scholar 

  • Nakao M., Nakayama T., Kakudo A., Inohara M., Harada M., Omura F. & Shibano Y. 1994. Structure and expression of a gene coding for thermostable α-glucosidase with a broad substrate specificity from Bacillus sp. SAM1606. Eur J Biochem 220: 293–300.

    Article  CAS  PubMed  Google Scholar 

  • Oslancova A. & Janecek S. 2002. Oligo-1,6-glucosidase and neop-ullulanase enzyme subfamilies from the α-amylase family defined by the fifth conserved sequence region. Cell. Mol. Life Sci. 59: 1945–1959.

    Article  CAS  PubMed  Google Scholar 

  • Palomo M., Pijning T., Booiman T., Dobruchowska J.M., van der Vlist J., Kralj S., Planas A., Loos K., Kamerling J.P., Dijkstra B.W., van der Maarel M.J., Dijkhuizen L. & Leemhuis H. 2011. Thermus thermophilus glycoside hydrolase family 57 branching enzyme:crystal structure, mechanism of action, and products formed. J. Biol. Chem. 286: 3520–3530.

    Article  CAS  PubMed  Google Scholar 

  • Park K.H., Jung J.H., Park S.G., Lee M.E., Holden J.F., Park C.S. & Woo E.J. 2014. Structural features underlying the selective cleavage of a novel exo-type maltose-forming amylase from Pyrococcus sp. ST04. Acta Crystallogr. D Biol. Crystallogr. 70: 1659–1668.

    Article  CAS  Google Scholar 

  • Puspasari F., Nurachman Z., Noer A.S., Radjasa O.K., van der Maarel M.J.E.C. & Natalia D. 2011. Characteristics of raw starch degrading α-amylase from Bacillus aquimaris MKSC 6.2 associated with soft coral Sinularia sp. Starch - Stärke 63: 461–467.

    Article  CAS  Google Scholar 

  • Puspasari F., Radjasa O.K., Noer A.S., Nurachman Z., Syah Y.M., van der Maarel M., Dijkhuizen L., Janecek S. & Natalia D. 2013. Raw starch-degrading α-amylase from Bacillus aquimaris MKSC 6.2: isolation and expression of the gene, bioinformatics and biochemical characterization of the recombinant enzyme. J. Appl. Microbiol. 114: 108–120.

    Article  CAS  PubMed  Google Scholar 

  • Ranjani V., Janecek S., Chai K.P., Shahir S., Noor R., Abdul Rahman Z.R., Chan K.G. & Goh K.M. 2014. Protein engineering of selected residues from conserved sequence regions of a novel Anoxybacillus α-amylase. Sci. Rep. 4: 5850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N. & Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    CAS  PubMed  Google Scholar 

  • Sharma A. & Satyanarayana T. 2013. Microbial acid-stable α-amylases: characteristics, genetic engineering and applications. Process Biochem. 48: 201–211.

    Article  CAS  Google Scholar 

  • Shatsky M., Nussinov R. & Wolfson H.J. 2004. A method for simultaneous alignment of multiple protein structures. Proteins 56: 143–156.

    Article  CAS  PubMed  Google Scholar 

  • Sivakumar N., Li N., Tang J.W., Patel B.K. & Swaminathan K. 2006. Crystal structure of AmyA lacks acidic surface and provide insights into protein stability at poly-extreme condition. FEBS Lett. 580: 2646–2652.

    Article  CAS  PubMed  Google Scholar 

  • Stam M.R., Danchin E.G., Rancurel C., Coutinho P.M. & Henrissat B. 2006. Dividing the large glycoside hydrolase family 13 into subfamilies:towards improved functional annotations of α-amylase-related proteins. Protein Eng. Des. Sel. 19: 555–562.

    Article  CAS  PubMed  Google Scholar 

  • Stanley D., Farnden K.J.F. & MacRae E.A. 2005. Plant α-amylases: functions and roles in carbohydrate metabolism. Biologia 60(Suppl.16): 65–71.

    CAS  Google Scholar 

  • Svensson B. 1994. Protein engineering in the α-amylase family: catalytic mechanism, substrate specificity, and stability. Plant Mol. Biol. 25: 141–157.

    Article  CAS  PubMed  Google Scholar 

  • UniProt Consortium 2014. Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res. 42: D191–D198.

    Article  CAS  Google Scholar 

  • van der Maarel M.J., van der Veen B., Uitdehaag J.C., Leemhuis H. & Dijkhuizen L. 2002. Properties and applications of starch-converting enzymes of the α-amylase family. J. Biotechnol. 94: 137–155.

    Article  PubMed  Google Scholar 

  • van Zyl W.H., Bloom M. & Viktor M.J. 2012. Engineering yeasts for raw starch conversion. Appl. Microbiol. Biotechnol. 95: 1377–1388.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe H., Nishimoto T., Kubota M., Chaen H. & Fukuda S. 2006. Cloning, sequencing, and expression of the genes encoding an isocyclomaltooligosaccharide glucanotransferase and an α-amylase from a Bacillus circulans strain. Biosci. Biotechnol. Biochem. 70: 2690–2702.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K., Hata Y., Kizaki H., Katsube Y. & Suzuki Y. 1997. The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 Å resolution: structural characterization of proline-substitution sites for protein thermostabilization. J. Mol. Biol. 269: 142–153.

    Article  CAS  PubMed  Google Scholar 

  • Zhang D., Li N., Lok S.M., Zhang L.H. & Swaminathan K. 2003. Isomaltulose synthase (PalI) of Klebsiella sp. LX3. Crystal structure and implication of mechanism. J. Biol. Chem. 278: 35428–35434.

    CAS  PubMed  Google Scholar 

  • Zona R., Chang-Pi-Hin F., O’Donohue M.J. & Janecek S. 2004. Bioinformatics of the family 57 glycoside hydrolases and identification of catalytic residues in amylopullulanase from Ther-mococcus hydrothermalis. Eur. J. Biochem. 271: 2863–2872.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Štefan Janeček.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janeček, Š., Kuchtová, A. & Petrovičová, S. A novel GH13 subfamily of α-amylases with a pair of tryptophans in the helix α3 of the catalytic TIM-barrel, the LPDlx signature in the conserved sequence region V and a conserved aromatic motif at the C-terminus. Biologia 70, 1284–1294 (2015). https://doi.org/10.1515/biolog-2015-0165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0165

Key words

Navigation