Skip to main content
Log in

Domain C of thermostable α-amylase of Geobacillus thermoleovorans mediates raw starch adsorption

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The gene (1,542 bp) encoding thermostable Ca2+-independent and raw starch hydrolyzing α-amylase of the extremely thermophilic bacterium Geobacillus thermoleovorans encodes for a protein of 50 kDa (Gt-amyII) with 488 amino acids. The enzyme is optimally active at pH 7.0 and 60 °C with a t 1/2 of 19.4 h at 60 and 4 h at 70 °C. Gt-amyII hydrolyses corn and tapioca raw starches efficiently and therefore finds application in starch saccharification at industrial sub-gelatinisation temperatures. The starch hydrolysis is facilitated following adsorption of the enzyme to starch at the C-terminal domain, as confirmed by the truncation analysis. The adsorption rate constant of Gt-amyII to raw corn starch is 37.6-fold greater than that for the C-terminus truncated enzyme (Gt-amyII-T). Langmuir–Hinshelwood kinetic analysis in terms of equilibrium parameter (K R) suggested that the adsorption of Gt-amyII to corn starch is more favourable than that of Gt-amyII-T. Thermodynamics of temperature inactivation indicated a decrease in thermostabilisation of Gt-amyII upon truncation of its C-terminus. The addition of raw corn starch increased t 1/2 of Gt-amyII, but it has no such effect on Gt-amyII-T. It can, therefore, be stated that Gt-amyII binds to raw corn starch via C-terminal region that contributes to its thermostability. Phylogenetic analysis confirmed that starch binding region of Gt-amyII is, in fact, the non-catalytic domain C, and not the typical SBD of CBM families. The role of domain C in raw starch binding throws light on the evolutionary path of the known SBDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe A, Tonozuka T, Sakano Y, Kamitori S (2004) Complex structures of Thermoactinomyces vulgaris R-47 α-amylase 1 with maltoligosaccharides demonstrate the role of domain N acting as a starch binding domain. J Mol Biol 335:811–822

    Article  CAS  PubMed  Google Scholar 

  • Asoodeh A, Chamanic JK, Lagzian M (2010) A novel thermostable, acidophilic alpha-amylase from a new thermophilic “Bacillus sp. Ferdowsicous” isolated from Ferdows hot mineral spring in Iran: purification and biochemical characterization. Int J Biol Macromol 46:289–297

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Huang H, Meng K, Shi P, Yang P, Luo H, Luo C, Feng Y, Zhang W, Yao B (2012) Identification of an acidic α-amylase from Alicyclobacillus sp. A4 and assessment of its application in the starch industry. Food Chem 131:1473–1478

    Article  CAS  Google Scholar 

  • Boraston AB, Healey M, Klassen J, Ficko-Blean E, van Bueren AL, Law V (2006) A structural and functional analysis of α-glucan recognition by family 25 and 26 carbohydrate-binding modules reveals a conserved mode of starch recognition. J Biol Chem 281:587–598

    Article  CAS  PubMed  Google Scholar 

  • Bǒzić N, Ruiz J, Lopez-Santin J, Vujčić Z (2011) Production and properties of the highly efficient raw starch digesting α-amylase from a Bacillus licheniformis ATCC 9945a. Biochem Eng J 53:203–209

    Article  Google Scholar 

  • Bozonnet S, Jensen MT, Nielsen MM, Aghajari N, Jensen MH, Kramhøft B, Willemoes M, Tranier S, Haser R, Svensson B (2007) The ‘pair of sugar tongs’ site on the non-catalytic domain C of barley α-amylase participates in substrate binding and activity. FEBS J 274:5055–5067

    Article  CAS  PubMed  Google Scholar 

  • Buedenbender S, Schulz GE (2009) Structural base for enzymatic cyclodextrin hydrolysis. J Mol Bio 385:606–617

    Article  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes (CAZy) database: an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chai YY, Rahman RN, Illias RM, Goh KM (2012) Cloning and characterization of two new thermostable and alkalitolerant α-amylases from the Anoxybacillus species that produce high levels of maltose. J Ind Microbiol Biotechnol 39:731–741

    Article  CAS  PubMed  Google Scholar 

  • Delano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos

    Google Scholar 

  • Dheeran P, Kumar S, Jaiswal YK, Adhikari DK (2010) Characterization of hyperthermostable α-amylase from Geobacillus sp. IIPTN. Appl Microbiol Biotechnol 86:1857–1866

    Article  CAS  PubMed  Google Scholar 

  • Ezeji TC, Bahl H (2006) Purification, characterization, and synergistic action of phytate-resistant alpha-amylase and alpha-glucosidase from Geobacillus thermodenitrificans HRO10. J Biotechnol 125:27–38

    Article  CAS  PubMed  Google Scholar 

  • Frillingos S, Linden A, Niehaus F, Vargas C, Nieto JJ, Ventosa A, Antranikian G, Drainas C (2000) Cloning and expression of alpha-amylase from the hyperthermophilic archaeon Pyrococcus woesei in the moderately halophilic bacterium Halomonas elongata. J Appl Microbiol 88:495–503

    Article  CAS  PubMed  Google Scholar 

  • Fritzsche HB, Schwede T, Schulz GE (2003) Covalent and three-dimensional structure of the cyclodextrinase from Flavobacterium sp. no. 92. Eur J Biochem 270:2332–2341

    Article  CAS  PubMed  Google Scholar 

  • Galvez A (2005) Analyzing cold enzyme starch hydrolysis technology in new ethanol plant design. Ethanol Producer 11:58–60

    Google Scholar 

  • Guillén D, Santiago M, Linares L, Pérez R, Morlon J, Ruiz B, Sánchez S, Rodríguez-Sanoja R (2007) Alpha-amylase starch binding domains: cooperative effects of binding to starch granules of multiple tandemly arranged domains. Appl Environ Microbiol 73:3833–3837

    Article  PubMed Central  PubMed  Google Scholar 

  • Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fund 5:212–223

    Article  CAS  Google Scholar 

  • Hmidet N, Bayoudh A, Berrin JG, Kanoun S, Juge N, Nasri M (2008) Purification and biochemical characterization of a novel α-amylase from Bacillus licheniformis NH1: cloning, nucleotide sequence and expression of amyN gene in Escherichia coli. Proc Biochem 43:499–510

    Article  CAS  Google Scholar 

  • Hua YW, Chi MCH, Lo HF, Hsu WH, Lin LL (2004) Fusion of Bacillus stearothermophilus leucine aminopeptidase II with the raw starch binding domain of Bacillus sp. strain TS-23 α-amylase generates a chimeric enzyme with enhanced thermostability and catalytic activity. J Ind Microbiol Biotechnol 31:273–277

    Article  CAS  PubMed  Google Scholar 

  • Iefuji H, Chino M, Kato M, Iimura Y (1996) Raw starch digesting and thermostable α-amylase from the yeast Cryptococcus sp. S-2: purification, characterization, cloning and sequencing. Biochem J 318:989–996

    CAS  PubMed Central  PubMed  Google Scholar 

  • Janeček Š (2002) How many conserved sequence regions are there in the α-amylase family? Biologia. Bratislava 57(suppl 11):29–41

    Google Scholar 

  • Karakas B, Inana M, Certel M (2010) Expression and characterization of Bacillus subtilis PY22 α-amylase in Pichia pastoris. J Mol Catal B Enzym 64(3–4):129–134

    Article  CAS  Google Scholar 

  • Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246

    Article  CAS  PubMed  Google Scholar 

  • Lo H-F, Lin L-L, Chiang W-Y, Chie M-C, Hsu W-H, Chang C-T (2002) Deletion analysis of the C-terminal region of the α-amylase of Bacillus sp. strain TS-23. Arch Microbiol 178:115–123

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Mehta D, Satyanarayana T (2013a) Biochemical and molecular characterization of recombinant acidic and thermostable raw starch hydrolysing α-amylase from an extreme thermophile Geobacillus thermoleovorans. J Mol Catal B Enzym 85–86:229–238

    Article  Google Scholar 

  • Mehta D, Satyanarayana T (2013b) Dimerization mediates thermo-adaptation, substrate affinity and transglycosylation in a highly thermostable maltogenic amylase of Geobacillus thermoleovorans. PLoS One 8(9):1–13

    Article  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 3:426–428

    Article  Google Scholar 

  • Mok S-C, Teh A-H, Saito JA, Najimudin N, Alam M (2013) Crystal structure of a compact α-amylase from Geobacillus thermoleovorans. Enzyme Microb Technol 53:46–54

    Article  CAS  PubMed  Google Scholar 

  • Puspasari F, Radjasa OK, Noer AS, Nurachman Z, Syah YM, van der Maarel M, Dijkhuizen L, Janeček S, Natalia D (2013) Raw starch degrading α-amylase from Bacillus aquimaris MKSC 6.2: isolation and expression of the gene, bioinformatics and biochemical characterization of the recombinant enzyme. J Appl Microbiol 114:108–120

    Article  CAS  PubMed  Google Scholar 

  • Rao JLUM, Satyanarayana T (2007) Purification, kinetics and applications of raw starch hydrolyzing, hyperthermostable, Ca2+ independent α-amylase of an extreme thermophile Geobacillus thermoleovorans. Appl Biochem Biotechnol 142:179–193

    Article  CAS  Google Scholar 

  • Robert X, Haser R, Gottschalk TE, Ratajczak F, Hugues D, Svensson B, Aghajari N (2003) The structure of barley α-amylase isozyme 1 reveals a novel role of domain C in substrate recognition and binding: a pair of sugar tongs. Structure 11:973–984

    Article  CAS  PubMed  Google Scholar 

  • Sorimachi K, Gal-Coëffet MFL, Williamson G, Archer DB, Williamson MP (1997) Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to β-cyclodextrin. Structure 5:647–661

    Article  CAS  PubMed  Google Scholar 

  • Sumitani J-I, Tottori T, Kawaguchi T, Arai M (2000) New type of starch binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. no. 195 α-amylase contributes to starch binding and raw starch degrading. Biochem J 350:477–484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • van Bueren AL, Boraston AB (2007) The structural basis of α-glucan recognition by a family 41 carbohydrate-binding module from Thermotoga maritima. J Mol Biol 365:555–560

    Article  PubMed  Google Scholar 

  • Yadav JK (2013) Macromolecular crowding enhances catalytic efficiency and stability of α-amylase. doi: 10.5402/2013/737805

  • Yamaguchia R, Inoueb Y, Tokunagab H, Ishibashib M, Arakawac T, Sumitanid J-I, Kawaguchid T, Tokunaga M (2012) Halophilic characterization of starch binding domain from Kocuria varians α-amylase. Int J Biol Macromol 50:95–102

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial assistance from the Council of Scientific and Industrial Research, New Delhi, Government of India while carrying out the work presented in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Satyanarayana.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1361 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehta, D., Satyanarayana, T. Domain C of thermostable α-amylase of Geobacillus thermoleovorans mediates raw starch adsorption. Appl Microbiol Biotechnol 98, 4503–4519 (2014). https://doi.org/10.1007/s00253-013-5459-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5459-8

Keywords

Navigation