Skip to main content
Log in

Dissolved oxygen concentration affects the accumulation of HIV-1 recombinant proteins in Escherichia coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A central problem in aerobic growth of any culture is the maintenance of dissolved oxygen concentration (DOC) above growth-limiting levels especially in high-cell density fermentations that are usually of the fed-batch type. Fermentor studies have been conducted to determine the influence of DOC on the production of heterologous proteins in Escherichia coli. The results demonstrated that there is a significant degree of product-to-product variation in the response of heterologous protein accumulation to DOC. For translational fusions of the human immunodeficiency virus-1 (HIV-1) proteins p24Gag and Env41, the imposition of a dissolved oxygen (DO) limitation resulted in 100 and 15% increases in the respective product yields. On the other hand, the imposition of a DO limitation had no effect on the production of a similar translational fusion of the HIV-1 protein p55Gag, and a large negative effect on the production of an influenza protein (C13). The stimulatory effects of DOC on p24Gag production were investigated further. The results of my studies suggested that the stimulatory effect observed at reduced agitation rates on p24Gag accumulation was owing to an oxygen effect and not a shear effect. Furthermore, the results of my investigations indicated that the effect a DOC had on the production of p24Gag was strongly influenced by the cell density at which the culture was induced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (1994), Current Protocols in Molecular Biology, vol. 2, Wiley, New York.

    Google Scholar 

  2. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989), Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  3. Lee, S. Y. (1996), Trends Biotechnol. 14, 98–105.

    Article  PubMed  CAS  Google Scholar 

  4. Knorre, W. A., Deckwer, W. D., Kroz, D., Pohl, H. D., Riesenberg, D., Ross, A., Sanders, E., and Schulz, V. (1991), Ann. NY Acad. Sci. 646, 300–306.

    Article  PubMed  CAS  Google Scholar 

  5. McNeil, B. and Harvey, L. M. (1990), Fermentation: A Practical Approach, IRL, Oxford, England.

    Google Scholar 

  6. Norris, J. R. and Ribbons, D. W. (1970), Methods in Microbiology, Academic, London, UK.

    Google Scholar 

  7. Yee, L. and Blanch, H. W. (1992), Biotechnol. NY 10, 1550–1556.

    Article  CAS  Google Scholar 

  8. Cutayar, J. M. and Poillon, D. (1989), Biotechnol. Lett. 11, 155–160.

    Article  CAS  Google Scholar 

  9. Arcuri, E. J., Turner, K., Sharr, D., and Okita, B. (1988), SIM News 4, 33.

    Google Scholar 

  10. Li, X., Robbins, J. W., Jr., and Taylor, K. B. (1992), J. Indust. Microbiol. 9, 1–10.

    Article  Google Scholar 

  11. Yamada, A., Ziese, M. R., Young, J. F., Yamada, Y. K., and Ennis, F. A. (1985), J. Exp. Med. 162, 663–674.

    Article  PubMed  CAS  Google Scholar 

  12. Stebbins, J., Deckman, I. C., Richardson, S. B., and Debouck, C. (1996), Anal. Biochem. 242, 90–94.

    Article  PubMed  CAS  Google Scholar 

  13. Chiang, C. S., Grove, T., Cooper, M., Cuan, J., Kowalski, A., Parcells, K., Tsunokawa, M., Rosenberg, M., Arcuri, E., and Franklin, S. (1989), Clin. Chem. 35, 946–952.

    PubMed  CAS  Google Scholar 

  14. Zabriskie, D. W., Wareheim, D. A., and Polansky, M. J. (1987), J. Indust. Microbiol. 2, 87–95.

    Article  CAS  Google Scholar 

  15. Scorer, C. A., Carrier, M. J., and Rosenberg, R. F. (1991), Nucl. Acid Res. 19, 3511–3516.

    Article  CAS  Google Scholar 

  16. Okita, B., Arcuri, E., Turner, A., Sharr, D., Del Tito, B., Swanson, J., Shatzman, A., and Zabriskie, D. (1989), Biotechnol. Bioeng. 34, 854–862.

    Article  CAS  Google Scholar 

  17. Heitzer, A., Mason, C. A., Snozzi, M., and Hamer, G. (1990), Arch. Microbiol. 155, 7–12.

    Article  PubMed  CAS  Google Scholar 

  18. Zabriskie, D. W. and Arcuri, E. J. (1986), Enzyme Microbiol. Technol. 8, 706–717.

    Article  CAS  Google Scholar 

  19. Laemmli, U. K. (1970), Nature 227, 680–685.

    Article  PubMed  ADS  CAS  Google Scholar 

  20. Ng, V. L., Chiang, C. S., Debouck, C., McGrath, M. S., Grove, T. H., and Mills, J. (1989), J. Clin. Microbiol. 27, 977–982.

    PubMed  CAS  Google Scholar 

  21. Clark, T. A., Hesketh, T., and Seddon, T. (1985), Biotechnol. Bioeng. 27, 1507.

    Article  CAS  Google Scholar 

  22. Gleiser, I. E. and Bauer, S. (1981), Biotechnol. Bioeng. 23, 1015.

    Article  CAS  Google Scholar 

  23. Wang, D. I. C., Cooney, C. L., Demain, A. L., Dunnill, P., Humphery, A. E., and Lilly, M. M. (1978), in Fermentation and Enzyme Technology, Wiley, New York.

    Google Scholar 

  24. Khosravi, M., Ryan, W., Webster, D. A., and Stark, B. C. (1990), Plasmid 23, 138–143.

    Article  PubMed  CAS  Google Scholar 

  25. Chen, W., Graham, C., and Ciccarelli, R. B. (1997), J. Indust. Microbiol. Biotechnol. 18, 43–48.

    Article  CAS  Google Scholar 

  26. Hellmuth, K., Korz, D. J., Sanders, E. A., and Deckwer, W. D. (1994), J. Biotechnol. 32, 289–298.

    Article  PubMed  CAS  Google Scholar 

  27. Khosla, C. and Baily, J. E. (1988), Nature 331, 633–635.

    Article  PubMed  ADS  CAS  Google Scholar 

  28. Sakamoto, S., Terada, I., Iijima, M., Matsuzawa, H., and Ohta, T. (1994), Appl. Microbiol. Biotechnol. 42, 569–574.

    Article  PubMed  CAS  Google Scholar 

  29. Nakagawa, S., Oda, H., and Anazawa, H. (1995), Biosci. Biotechnol. Biochem. 59, 2263–2267.

    Article  PubMed  CAS  Google Scholar 

  30. Herber, W. K., Baily, F. J., Carty, C. E., Heimbach, J. C., and Maigetter, R. Z. (1991), Appl. Microbiol. Biotechnol. 36, 149–152.

    Article  PubMed  CAS  Google Scholar 

  31. Chang, L. L., Hwang, L. Y., Hwang, C. F., and Mou, D. G. (1991), Ann. NY. Acad. Sci. 646, 259–272.

    Article  PubMed  CAS  Google Scholar 

  32. Jung, G., Denefle, P., Becquart, J., and Mayaux, J. F. (1988), Ann. Inst. Pasteur Microbiol. 139, 129–146.

    Article  PubMed  CAS  Google Scholar 

  33. Bailey, F. J., Blankenship, J., Condra, J. H., Maigetter, R. Z., and Ellis, R. W. (1987), J. Indust. Microbiol. 2, 47–52.

    Article  CAS  Google Scholar 

  34. Smith, M. W. and Neidhardt, F. C. (1983), J. Bacteriol. 154, 344–350.

    PubMed  CAS  Google Scholar 

  35. Spiro, S. and Guest, J. R. (1991), Trends Biochem. Sci. 16, 310–314.

    Article  PubMed  CAS  Google Scholar 

  36. Gunsalus, R. P. and Park, S. J. (1994), Res. Microbiol. 145, 437–450.

    Article  PubMed  CAS  Google Scholar 

  37. Park, S. J., Chao, G., and Gunsalus, R. P. (1997), J. Bacteriol. 179, 4138–4142.

    PubMed  CAS  Google Scholar 

  38. Chao, G., Shen, J., Tseng, C. P., Park, S. J., and Gunsalus, R. P. (1997), J. Bacteriol. 179, 4299–4304.

    PubMed  CAS  Google Scholar 

  39. Jyothirmai, G. and Mishra, R. K. (1994), FEBS Lett. 340, 189–192.

    Article  PubMed  CAS  Google Scholar 

  40. Wang, J. C. and Lynch, A. S. (1993), Curr. Opin. Genet. Dev. 3, 764–768.

    Article  PubMed  CAS  Google Scholar 

  41. Dixon, R. A., Henderson, N. C., and Austin, S. (1988), Nucl. Acid Res. 16, 9933–9946.

    Article  CAS  Google Scholar 

  42. Fu, J., Tonga, A. P., Shuler, M. L., and Wilson, D. B. (1992), Biotechnol. Prog. 8, 340–346.

    Article  PubMed  CAS  Google Scholar 

  43. Modi, R. I., Castilla, L. H., Puskas-Rozsa, S., Helling, R. B., and Adams, J. (1992), Genetics 130, 241–249.

    PubMed  CAS  Google Scholar 

  44. Andersson, L., Yang, S., Neubauer, P., and Enfors, S. O. (1996), J. Biotechnol. 46, 255–263.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qoronfleh, M.W. Dissolved oxygen concentration affects the accumulation of HIV-1 recombinant proteins in Escherichia coli . Appl Biochem Biotechnol 80, 107–120 (1999). https://doi.org/10.1385/ABAB:80:2:107

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:80:2:107

Index Entries

Navigation