Skip to main content

Advertisement

Log in

Recombinant Escherichia coli cultivation in a pressurized airlift bioreactor: assessment of the influence of temperature on oxygen transfer and uptake rates

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Temperature influences the rates of oxygen transfer (OTR) and uptake (q O2) in aerobic bioprocesses. Hence, joint analysis of q O2 and OTR at variable temperature is essential for bioprocess optimization and control. However, no such analyses have yet been reported for cultures of engineered E. coli producing recombinant proteins. E. coli cultivations at different temperatures (27–37 °C) were performed using a 5-L stirred tank bioreactor (STB), and a 5-L airlift bioreactor (ALB) was used to measure k L a and validate models of q O2 and OTR. The equations were then employed to evaluate the cultivation process in the ALB at different pressures (0.1–0.4 MPa) and temperatures (27–37 °C). The results showed that the positive effect of temperature on k L a was more pronounced than the negative influence on oxygen solubility, increasing the OTR in the ALB. The specific growth rate and temperature influenced q O2. In contrast to previous reports, the results showed that q O2 was not explicitly affected by recombinant protein synthesis. In addition, model predictions revealed that biomass concentration and productivity were greatly improved by pressurization of the system and use of a lower temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a :

Gas–liquid interfacial area per unit of liquid volume (m−1)

a k :

Parameter of Eq. (12) (h−1)

a q :

Parameter of Eq. (7) (°C−3 h−1)

a µ :

Parameter of Eq. (3) (°C−1 h−1)

ALB:

Airlift bioreactor

b k :

Parameter of Eq. (12) (min)

b q :

Parameter of Eq. (7) (h−1)

b µ :

Parameter of Eq. (3) (h−1)

C :

Dissolved oxygen concentration in the bulk liquid (g L−1)

c j :

Concentration of non-electrolyte j (g L−1)

c k :

Parameter of Eq. (12) (min−1)

C * :

Oxygen solubility in the culture medium (g L−1)

C *0 :

Oxygen solubility in water (g L−1)

C x :

Cell concentration (gDCW L−1)

C x0 :

Cell concentration at the start of exponential growth phase (gDCW L−1)

C xmax :

Maximum cell concentration (gDCW L−1)

D :

Oxygen diffusion coefficient (m2 h−1)

d b :

Bubble diameter (m)

DO:

Dissolved oxygen

DOT:

Dissolved oxygen tension (% of saturation)

H i :

Salting-out parameter of ion i in Eq. (15) (L mol−1)

h D :

Height of the aerated liquid (cm)

h L :

Height of the non-aerated liquid (cm)

I i :

Ionic strength of ion i (mol L−1)

IPTG:

Isopropyl-β-d-thiogalactopyranoside

K j :

Solubility parameter for non-electrolyte j in Eq. (15) (L g−1)

k e :

Electrode sensitivity (h−1)

k L :

Mass transfer coefficient (m h−1)

k L a :

Volumetric oxygen transfer coefficient (h−1)

q O2 :

Specific oxygen transfer rate (gO2 g −1DCW h−1)

q p :

Specific production rate of PspA (h−1)

OTR:

Oxygen transfer rate (g L−1 h−1)

OUR:

Oxygen uptake rate (g L−1 h−1)

PspA:

Pneumococcal surface protein A

P x :

Biomass productivity (gDCW L−1 h−1)

p :

Absolute pressure (MPa)

p O2 :

Absolute partial pressure of oxygen (MPa)

m O2 :

Oxygen consumption coefficient for maintenance (h−1)

M O2 :

Molar mass of molecular oxygen (g mol−1)

in :

Molar flow rate of the gas inlet stream (mol L−1 h−1)

out :

Molar flow rate of the exhaust gas (mol L−1 h−1)

STB:

Stirred tank bioreactor

t :

Time (h)

t e :

Exposure time (h)

T :

Temperature (°C)

y CO2 :

Mole fraction of carbon dioxide

y O2 :

Mole fraction of oxygen

Y x/O2 :

Biomass yield on oxygen (gDCW g −1O2 h−1)

V :

Working volume of the bioreactor (L)

Δt :

Time of cultivation (h)

ε :

Gas hold-up

ϕ :

Specific gas flow rate (min−1)

µ :

Specific growth rate (h−1)

µ max :

Maximum specific growth rate (h−1)

θ :

Parameter of Eq. (12) (dimensionless)

References

  1. Onken U, Leifke E (1989) Effect of total and partial pressure (oxygen and carbon dioxide) on aerobic microbial processes. Adv Biochem Eng Biotechnol 40:137–169

    CAS  Google Scholar 

  2. FDA (2004) Guidance for industry: PAT—a framework for innovative pharmaceutical development, manufacturing, and quality assurance. Food and Drug Administration, Rockville, MD

  3. Huang T-K, McDonald K (2009) Bioreactor engineering for recombinant protein production in plant cell suspension cultures. Biochem Eng J 45:168–184. doi:10.1016/j.bej.2009.02.008

    Article  CAS  Google Scholar 

  4. Campani G, Santos MP, Silva GG et al (2016) Recombinant protein production by engineered Escherichia coli in a pressurized airlift bioreactor: a techno-economic analysis. Chem Eng Process Process Intensif 103:63–69. doi:10.1016/j.cep.2015.10.020

    Article  CAS  Google Scholar 

  5. Daniil EI, Gulliver JS (1988) Temperature dependence of liquid film coefficient for gas transfer. J Environ Eng 114:1224–1229. doi:10.1061/(ASCE)0733-9372(1988)114:5(1224)

    Article  Google Scholar 

  6. Bewtra JK, Nicholas WR, Polkowski LB (1970) Effect of temperature on oxygen transfer in water. Water Res 4:115–123. doi:10.1016/0043-1354(70)90023-0

    Article  CAS  Google Scholar 

  7. Boogerd FC, Bos P, Kuenen JG et al (1990) Oxygen and carbon dioxide mass transfer and the aerobic, autotrophic cultivation of moderate and extreme thermophiles: a case study related to the microbial desulfurization of coal. Biotechnol Bioeng 35:1111–1119. doi:10.1002/bit.260351106

    Article  CAS  Google Scholar 

  8. Krahe M, Antranikian G, Märkl H (1996) Fermentation of extremophilic microorganisms. FEMS Microbiol Rev 18:271–285. doi:10.1111/j.1574-6976.1996.tb00243.x

    Article  CAS  Google Scholar 

  9. Vogelaar JCT, Klapwijk A, Van Lier JB, Rulkens WH (2000) Research note temperature effects on the oxygen transfer rate between 20 and 55 °C. Water Res 34:1037–1041. doi:10.1016/S0043-1354(99)00217-1

    Article  CAS  Google Scholar 

  10. Maré L, Velut S, Ledung E et al (2005) A cultivation technique for E. coli fed-batch cultivations operating close to the maximum oxygen transfer capacity of the reactor. Biotechnol Lett 27:983–990. doi:10.1007/s10529-005-7844-6

    Article  Google Scholar 

  11. Neubauer P, Lin HY, Mathiszik B (2003) Metabolic load of recombinant protein production: inhibition of cellular capacities for glucose uptake and respiration after induction of a heterologous gene in Escherichia coli. Biotechnol Bioeng 83:53–64. doi:10.1002/bit.10645

    Article  CAS  Google Scholar 

  12. Glick BR (1995) Metabolic load and heterologous gene expression. Biotechnol Adv 13:247–261. doi:10.1016/0734-9750(95)00004-A

    Article  CAS  Google Scholar 

  13. Bhattacharya SK, Dubey AK (1997) Effects of dissolved oxygen and oxygen mass transfer on overexpression of target gene in recombinant E. coli. Enzyme Microb Technol 20:355–360. doi:10.1016/S0141-0229(96)00151-2

    Article  CAS  Google Scholar 

  14. Shuler ML, Kargi F (2002) Bioprocess engineering: Basic concepts, 2nd edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  15. Moreno AT, Oliveira MLS, Ferreira DM et al (2010) Immunization of mice with single PspA fragments induces antibodies capable of mediating complement deposition on different pneumococcal strains and cross-protection. Clin Vaccine Immunol 17:439–446. doi:10.1128/CVI.00430-09

    Article  CAS  Google Scholar 

  16. Perciani CT, Barazzone GC, Goulart C et al (2013) Conjugation of polysaccharide 6B from Streptococcus pneumoniae with pneumococcal surface protein A: pspA conformation and its effect on the immune response. Clin Vaccine Immunol 20:858–866. doi:10.1128/CVI.00754-12

    Article  CAS  Google Scholar 

  17. Miyaji EN, Oliveira MLS, Carvalho E, Ho PL (2013) Serotype-independent pneumococcal vaccines. Cell Mol Life Sci 70:3303–3326. doi:10.1007/s00018-012-1234-8

    Article  CAS  Google Scholar 

  18. Horta ACL, Sargo CR, Silva AJ et al (2012) Intensification of high cell-density cultivations of E. coli for production of S. pneumoniae antigenic surface protein, PspA3, using model-based adaptive control. Bioprocess Biosyst Eng 35:1269–1280. doi:10.1007/s00449-012-0714-4

    Article  CAS  Google Scholar 

  19. Horta ACL, Silva AJ, Sargo CR et al (2014) A supervision and control tool based on artificial intelligence for high cell density cultivations. Braz J Chem Eng 31:457–468. doi:10.1590/0104-6632.20140312s00002304

    Article  Google Scholar 

  20. Campani G, Ribeiro MPA, Horta ACL et al (2015) Oxygen transfer in a pressurized airlift bioreactor. Bioprocess Biosyst Eng 38:1559–1567. doi:10.1007/s00449-015-1397-4

    Article  CAS  Google Scholar 

  21. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  CAS  Google Scholar 

  22. Himmelblau DM (1970) Process analysis by statistical methods. Wiley, New York

    Google Scholar 

  23. Sagmeister P, Langemann T, Wechselberger P et al (2013) A dynamic method for the investigation of induced state metabolic capacities as a function of temperature. Microb Cell Fact 12:94. doi:10.1186/1475-2859-12-94

    Article  Google Scholar 

  24. Garcia-Ochoa F, Gomez E, Santos VE, Merchuk JC (2010) Oxygen uptake rate in microbial processes: an overview. Biochem Eng J 49:289–307. doi:10.1016/j.bej.2010.01.011

    Article  CAS  Google Scholar 

  25. Chisti MY (1989) Airlift bioreactors, 1st edn. Elsevier, London

    Google Scholar 

  26. Linek V, Benes P, Vacek V (1989) Dynamic pressure method for kla measurement in large-scale bioreactors. Biotechnol Bioeng 33:1406–1412. doi:10.1002/bit.260331107

    Article  CAS  Google Scholar 

  27. Cerri MO, Esperança MN, Badino AC, de Ribeiro MPA (2016) A new approach for kLa determination by gassing-out method in pneumatic bioreactors. J Chem Technol Biotechnol 91:3061–3069. doi:10.1002/jctb.4937

    Article  CAS  Google Scholar 

  28. Leung SM, Little JC, Holst T, Love NG (2006) Air/water oxygen transfer in a biological aerated filter. J Environ Eng 132:181–189. doi:10.1061/(ASCE)0733-9372(2006)132:2(181)

    Article  CAS  Google Scholar 

  29. Branch MA, Coleman TF, Li Y (1999) A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM J Sci Comput 21:1–23. doi:10.1137/S1064827595289108

    Article  Google Scholar 

  30. Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27:153–176. doi:10.1016/j.biotechadv.2008.10.006

    Article  CAS  Google Scholar 

  31. Poling BE, Thomson GH, Friend DG et al (2007) Perry’s Chemical Engineers’ Handbook. Perry Chem Eng Handb. doi:10.1036/0071511253

    Google Scholar 

  32. Hitchman ML (1978) Measurement of dissolved oxygen, 1st edn. Wiley, New York

    Google Scholar 

  33. Quicker G, Schumpe A, König B, Deckwer W-D (1981) Comparison of measured and calculated oxygen solubilities in fermentation media. Biotechnol Bioeng 23:635–650. doi:10.1002/bit.260230313

    Article  CAS  Google Scholar 

  34. Schumpe A, Quicker G, Deckwer W-D (1982) Gas solubilities in microbial culture media. In: Advances in biochemical engineering, vol 24. Springer, Heidelberg

  35. Cerri MO, Futiwaki L, Jesus CDF et al (2008) Average shear rate for non-Newtonian fluids in a concentric-tube airlift bioreactor. Biochem Eng J 39:51–57. doi:10.1016/j.bej.2007.08.009

    Article  CAS  Google Scholar 

  36. Bustamante MCC, Cerri MO, Badino AC (2013) Comparison between average shear rates in conventional bioreactor with Rushton and Elephant ear impellers. Chem Eng Sci 90:92–100. doi:10.1016/j.ces.2012.12.028

    Article  CAS  Google Scholar 

  37. Lange H, Taillandier P, Riba J-P (2001) Effect of high shear stress on microbial viability. J Chem Technol Biotechnol 76:501–505. doi:10.1002/jctb.401

    Article  CAS  Google Scholar 

  38. Eiteman MA, Altman E (2006) Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol 24:530–536. doi:10.1016/j.tibtech.2006.09.001

    Article  CAS  Google Scholar 

  39. Shiloach J, Fass R (2005) Growing E. coli to high cell density—a historical perspective on method development. Biotechnol Adv 23:345–357. doi:10.1016/j.biotechadv.2005.04.004

    Article  CAS  Google Scholar 

  40. Studier FW (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif 41:207–234. doi:10.1016/j.pep.2005.01.016

    Article  CAS  Google Scholar 

  41. Meyenburg KVON, Andersen KB (1980) Are growth rates of Escherichia coli in batch cultures limited by respiration? J Bacteriol 144:114–123

    Google Scholar 

  42. Knoll A, Maier B, Tscherrig H, Büchs J (2005) The oxygen mass transfer, carbon dioxide inhibition, heat removal, and the energy and cost efficiencies of high pressure fermentation. Adv Biochem Eng Biotechnol 92:77–99

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil) (Grant Process 142482/2014-5), FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, Brazil) (Grant Process 2015/10291-8), and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil) for funding this work. We also acknowledge Amadeus Azevedo for HPLC analyses and Prof. Alberto C. Badino for the 5-L airlift bioreactor used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Perencin de Arruda Ribeiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campani, G., Gonçalves da Silva, G., Zangirolami, T.C. et al. Recombinant Escherichia coli cultivation in a pressurized airlift bioreactor: assessment of the influence of temperature on oxygen transfer and uptake rates. Bioprocess Biosyst Eng 40, 1621–1633 (2017). https://doi.org/10.1007/s00449-017-1818-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1818-7

Keywords

Navigation