Skip to main content
Log in

Effect of the levels of dissolved oxygen on the expression of recombinant proteins in four recombinantEscherichia coli strains

  • Published:
Journal of Industrial Microbiology

Summary

Four recombinant strains ofEscherichia coli were examined for the effects of the dissolved oxygen level on the level of biomass, the plasmid content, and the level of recombinant protein at the stationary phase of batch growth. Strains JM101/pYEJ001, and TB-1/pYEJ001 (encoding chloramphenicol acetyltransferase), and strain TB-1/p1034, and TB-1/pUC19 (encoding β-galactosidase) were grown at the constant dissolved oxygen levels of 0, 50, and 100% air saturation, as well as in the absence of dissolved, oxygen control. The biomass of all strains under constant aerobic conditions was 12–36 times higher than that under anaerobic conditions, but was the same as or slightly higher than that without dissolved oxygen control. The plasmid content in all strains under anaerobic conditions was 2.9–11.7 times higher than that under aerobic conditions. The optimal dissolved oxygen concentration for the specific activity of recombinant proteins was dependent upon the strain. In no strain were constant aerobic conditions optimal. However, because of the effect on biomass, controlled aerobic conditions were optimal for the volumetric activity of recombinant protein in all but one strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arcuri, E.J., K. Turner, D. Sharr and B. Okita. 1988. The influence of dissolved oxygen limitation upon the accumulation of heterogeneous proteins inEscherichia coli. SIM News 4: 33.

    Google Scholar 

  2. Bailey, F.J., J. Blankenship, J.H. Condra, R.Z. Maigetter and R.W. Ellis. 1987. High-cell-density fermentation studies of a recombinantEscherichia coli that expresses atrial natriuretic factor. J. Ind. Microbiol. 2: 47–52.

    Google Scholar 

  3. Brauer, H. 1985. In: Biotechnology (Brauer, H., ed.), pp. 161, VCH, Weinheim, F.R.G.

    Google Scholar 

  4. Bauer, S. and E. Zin. 1976. Dense growth of aerobic bacteria in a bench-scale fermentor. Biotechnol. Bioeng. 18: 81–94.

    Google Scholar 

  5. Clark, T.A., T. Hesketh and T. Seddon. 1985. Automatic control of dissolved oxygen tension via fermentor agitation speed. Biotechnol. Bioeng. 27: 1507.

    Google Scholar 

  6. Chambers, S.P., S.E. Prior, D.A. Bartow and N.P. Minton. 1988. The pMTL nic cloning vectors. Gene 68: 139–149.

    Google Scholar 

  7. Cutayar, J.M. and D. Poillon. 1989. High cell density culture ofE. coli in a fed-batch system with dissolved oxygen as a substrate feed indicaton. Biotechnol. Lett. 11: 155–160.

    Google Scholar 

  8. Doelle, H.W. 1981. In: Biotechnology (Rehm, H.-J. and G. Reed, eds.), pp. 196, Verlag Chemie, Weinheim, F.R.G.

    Google Scholar 

  9. Epstein, W., L.B. Rothman-Denes and J. Hesse. 1975. Adenosine 3′, 5′-cyclic monophosphate as mediator of catabolic repression inEscherichia coli. Proc. Natl. Acad. Sci. USA 72: 2300.

    Google Scholar 

  10. Flynn, D.S. and M.D. Lilly. 1967. A model for the control of the dissolved oxygen tension in microbial cultures. Biotechnol. Bioeng. 9: 515–531.

    Google Scholar 

  11. Gleiser, I.E. and S. Bauer. 1981. Growth ofE. coli W to high cell density by oxygen level linked control of carbon source concentration. Biotechnol. Bioeng. 23: 1015.

    Google Scholar 

  12. Goldberg, A.L. and S.A. Goff. 1986. The selective degradation of abnormal proteins in bacteria. In: Maximizing Gene Expression (Reznicoff, W. and L. Gold, eds.), pp. 287–314, Butterworth Publishers, Stoneham.

    Google Scholar 

  13. Hopkins, D.J., M.J. Betenbaugh and P. Dhurjati. 1987. Effects of dissolved oxygen shock on the stability of recombinantEscherichia coli containing plasmid pKN401. Biotechnol. Bioeng. 29: 85–91.

    Google Scholar 

  14. Koizumi, J., Y. Monden and S. Aiba. 1985. Effects of temperature and dilution rate on the copy number of recombinant plasmid in continuous culture ofBacillus stearothermophilus (pLP11). Biotechnol. Bioeng. 27: 721–728.

    Google Scholar 

  15. Lancaster, M.J., R.J. Sharp, J.R. Court, I.D. McEntee, R.G. Melton and R. Sherwood. 1989. Production of cloned carboxypeptidase G2 byEscherichia coli: genetic and environmental considerations. Biotechnol. Lett. 10: 699–704.

    Google Scholar 

  16. Laemmli, U.K. 1970. Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680.

    Google Scholar 

  17. Lee, G.M., K.B. Son, S.K. Rhee and M.H., Han. 1986. Plasmid maintenance and growth of recombinantSaccharomyces cerevisiae producing hepatitis B virus surface antigen. Biotechnol. Lett. 8: 385–390.

    Google Scholar 

  18. Lee, Y.L. and H.N. Chang. 1988. High cell density continuous culture ofEscherichia coli producing penicillin acylase. Biotechnol. Lett. 10: 787–792.

    Google Scholar 

  19. Li, X., J.W. Robbins, Jr. and K.B. Taylor. 1990. The production of recombinant beta-galactosidase inEscherichia coli in yeast extract enriched medium. J. Ind. Microbiol. 5: 85–94.

    Google Scholar 

  20. Maniatis, T., E.F. Fritsch and J. Sambrook. 1982. Transformation ofEscherichia coli by plasmid DNA. In: Molecular Cloning, pp. 249–255, Cold Spring Harbor Laboratory, New York, NY.

    Google Scholar 

  21. Maniatis, T., E.F. Frisch and J. Sambrook. 1982. Rapid isolation of plasmid or bacteriophage DNA. In: Molecular Cloning, pp. 365–373, Cold Spring Harbor Laboratory, New York, NY.

    Google Scholar 

  22. Mizukami, T., Y. Komatsu, N. Hosoi, S. Itoh and T. Oka. 1986. Production of active human interferon-B inEscherichia coli. Biotechnol. Lett. 9: 605–610.

    Google Scholar 

  23. Robbins, J.W., Jr. and K.B. Taylor. 1989. Optimization ofEscherichia coli growth by controlled addition of glucose. Biotechnol. Bioeng. 34: 1289–1294.

    Google Scholar 

  24. Rollins, M.J., S.E. Jensen and D.W.S. Westlake. 1988. Effect of aeration of antibiotic production byStreptomyces clavuligerus. J. Ind. Microbiol. 3: 357–364.

    Google Scholar 

  25. Ryan, W., S.J. Parulekar and B.C. Stark. 1989. Expression of B-lactamase by recombinantEscherichia coli strains containing plasmids of different sizes—effects of pH, phosphate, and dissolved oxygen. Biotechnol. Bioeng. 34: 309–319.

    Google Scholar 

  26. Seo, J.-H. and J.E. Bailey. 1985. Effects of recombinant plasmid content on growth properties and cloned gene product formation inEscherichia coli. Biotechnol. Bioeng. 27: 1668–1674.

    Google Scholar 

  27. Shaw, W.V. and R.F. Brodsky. 1968. Characterization of chloramphenicol acetyltransferase from chloramphenicol resistantStaphylococcus aureus. J. Bacteriol 95: 28–36.

    Google Scholar 

  28. Stainer, R.Y., J.L. Ingraham, M.L. Wheelis and P.R. Painter. 1986. In: The Microbial World, pp. 210, Prentice-Hall, New York.

    Google Scholar 

  29. Tolentino, G.J. and K.-Y. San. 1988. Plasmid maintenance and gene expression of a recombinant culture under aerobic and anaerobic conditions. Biotechnol. Lett. 10: 373–376.

    Google Scholar 

  30. Wang, D.I.C., C.L. Cooney, A.L. Demain, P. Dunnill, A.E. Humphrey and M.M. Lilly. 1978. In: Fermentation and Enzyme Technology, pp. 91, Wiley, New York.

    Google Scholar 

  31. Weber, A.E. and K.-Y. San. 1987. Presistence and expression of the plasmid pBR322 inEscherichia coli K-12 cultured in complex medium. Biotechnol. Lett. 11: 757–760.

    Google Scholar 

  32. Yegneswaran, P.K., M.R. Gray and D.W.S. Westlake. 1988. Effects of reduced oxygen on growth and antibiotic production inStreptomyces clavuligerus. Biotechnol. Lett. 10: 479–484.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Robbins, J.W. & Taylor, K.B. Effect of the levels of dissolved oxygen on the expression of recombinant proteins in four recombinantEscherichia coli strains. Journal of Industrial Microbiology 9, 1–9 (1992). https://doi.org/10.1007/BF01576362

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01576362

Key words

Navigation